Ministry for Primary Industries Manatū Ahu Matua

An assessment of climate mitigation co-benefits arising from the Freshwater Reforms

APPENDICES

MPI Technical Paper No: 2017/20

Prepared for the Ministry for Primary Industries

By M. Shepherd¹, A. Mackay¹, R. Monaghan¹, R. Vibart¹, B. Devantier¹, S. Wakelin³, T. Payn³, K. Müller², G. Lucci¹, B. Clothier², B. Hock³ and D. Harrison³

¹AgResearch ²Plant and Food ³Scion

ISBN No: 978-1-77665-527-4 (online) ISSN No: 2253-392 (online)

September 2016

New Zealand Government

Growing and Protecting New Zealand

Disclaimer

The information in this publication is for consultation only: it is not government policy. While every effort has been made to ensure the information in this publication is accurate, the Ministry for Primary Industries does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Any view or opinion expressed does not necessarily represent the view of the Ministry for Primary Industries.

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/

© Crown Copyright - Ministry for Primary Industries

An a	assessment of climate mitigation co-benefits arising from the Freshwater Reforms	1
APP	'ENDICES	1
1.	Appendix I - Assessment of the policy landscape	2
1.1	Waikato	2
1.2	Bay of Plenty	2
1.3	Manawatu- Whanganui	3
1.4	Gisborne	4
1.5	Environment Canterbury	5
1.6	Southland	6
2.	Appendix II - Mitigations to decrease nutrient and sediment losses to water	8
2.1	Qualitative evaluation of individual potential mitigations	8
2.2	Mitigation matrix	16
3.	Appendix III - Modelling Afforestation on Farms	20
1.1	Forestry Profitability Calculation Assumptions	23
4.	Appendix IV – Enterprises	27
5.	Appendix V – Mitigation options for arable and vegetable farms	40
6.	Appendix VI – Abatement curves for S&B sites	48
7.	Appendix VII – Abatement curves for dDairy sites	67

1. Appendix I - Assessment of the policy landscape

1.1 Waikato

1.1.1 Waikato and Waipa Rivers

The Healthy Rivers: Plan for Change (http://www.waikatoregion.govt.nz/healthyrivers/) is dedicated to developing plan changes to the Waikato Regional Plan, to "help restore and protect the health of the Waikato and Waipa rivers". This project is led by the Collaborative Stakeholder Group (CSG) and supported by the Technical Leaders Group (TLG) who is responsible for collecting and analysing data and presenting results to the CSG to aid in decision making. Although the plan change is still being defined, fresh water limits will be defined giving effect to the NPS freshwater management and the National Objectives Framework and the Vision and Strategy for the Waikato and Waipa rivers. The limits focus on four contaminants, N,P E coli and sediment and the impact of these on fresh water values. The CSG have had a focus on understanding the impact of land use and land management on the generation of these contaminants and have explored a range of on farm mitigation tools and catchment wide tools such as wetlands and bunds to reduce emissions. It is likely that there will be a focus on-farm of using good practice and farm plans as initial tools to manage loss from farms. Policy is being developed to align with the requirements to reduce emissions and this may take the form of catchment rules, consented activities etc.

There are around 5,000 farms that will be affected by this new legislation, of which 2,500 are dairy farms. In general, the CSG considers N as the main contaminant from dairy and arable, while P and sediment are the contaminants of concern from drystock enterprises. Forestry is seen as less of a problem with spikes in nutrients at harvest but more important are the sediment loads coming from logging tracks. Faecal coliforms (e.g. E. coli as an indicator) are also a concern for dairy and drystock land uses.

At present, the TLG is undertaking modelling of land use and management changes to look at scenarios for a phased reduction in N, P, sediment and microorganisms. The modelling also includes economic estimates of the costs of implementing the proposed changes. The results of this modelling, and options for plan changes will be released shortly.

1.1.2 Lake Taupo

To protect the water quality of Lake Taupo, a market-based regulatory strategy has been implemented to 'cap' the inputs of N to the lake and then to reduce it by 20% by 2020 (http://www.waikatoregion.govt.nz/PageFiles/3918/V5% 20Operative% 20Version.pdf). The local government policy ("Variation 5") set a maximum N leaching value on individual farms based on their farming practices over the 2001-2004 benchmarking period, with N leaching calculated for these practices using the OVERSEER® Nutrient Budgets model (Wheeler et al., 2003). Nitrogen leaching is seen as the main risk to the lake, while phosphorus conditions will continue to be monitored and evaluated.

1.2 Bay of Plenty

1.2.1 Rotorua

Draft rules of the Rotorua Te Arawa Lakes Programme are based on the Lake Rotorua groundwater catchment (http://www.rotorualakes.co.nz/vdb/document/1255). The goal is to

reduce the load of N to Lake Rotorua by 320 tonnes to achieve an annual N limit of 435 tonnes by 2032 (from current load of 755 t N/y), with 70% of the catchment target reached by 2022.

The strategy to achieve this target is to remove 50 t N/y through "engineering solutions" (to remove geothermal sources of N) and 30 t N/ha through gorse removal. A further 96 t N/y from dairy and 44 t N/y from drystock will be removed through Nitrogen Discharge Allowances (NDAs), and additional 100 t N/y through an incentives scheme (selling NDAs). The N leaching rates allowed for each sector are presented in Table A1.1. Phosphorus limits are not specifically set, but are typically based on a lake's target trophic level index. Part of an individual farm property or a farming enterprise's N management plan shall identify the risks of sediment and P loss and best practices to reduce those losses shall be implemented.

Conditions set on forestry enterprises are that there is no grazing on the land, no transfer of NDAs and the period between harvesting and replanting is less than two **years**.

Sector	Sector area (ha)	Sustainable lake load by sector (t N/yr)	Sector proportion reduction (Integrated Framework)	N leaching rate by sector (t N/ha/yr) (OVERSEER® 6.2)
Dairy	5,016	324	35.3%	64.5
Drystock	16,266	416	17.2%	25.6
Forestry	19,215	54.0		2.8
 Production Forestry 	8,946	22.5		2.5
Bush/Scrub	10,269	30.9		3
House blocks	468	20.2		43.2

Table A1.1. Sustainable load to Lake Rotorua (according to Policy LR P1).

1.2.2 Wider region

The Bay of Plenty Regional council has adopted a "protect what we have" approach (Bay of Plenty, 2015a). The Regional Council has divided the Bay of Plenty Region into nine water management areas (WMAs) prioritising the Rangitaiki and Kaituna to begin the limit setting process in 2015.

The major land use activities and areas of concern in the Bay of Plenty (Bay of Plenty, 2015b) include animals grazing near waterways and soil disturbance leading to loss of sediment (e.g., earthworks) (See also Box 2A in Appendix). Specific soil types that require consideration are light volcanic soils, and steep greywacke hill country and organic (peat) soils.

1.3 Manawatu- Whanganui

Key issues for water quality in the region include: nutrient levels, algae growth and sediment. Around 75% of this region is classified as hill country and 40% of this land has potential for moderate to severe erosion. There is a need to mitigate this risk to preserve this productive land. The Sustainable Land Use Initiative (SLUI), a non-regulatory approach, that is backed up by regulations covering vegetation clearing and tracking, takes a 'mountains to the sea' approach to prevent accelerated erosion in hill country. SLUI is the key instrument being used in the region to reduce sediment and associated phosphorus losses to waterways. The growing concern around the intensification of land use (e.g., dairy) in the region and the effect of increased nutrient and bacterial runoff on water quality was tackled in Horizons' regional policy document, the One Plan. For example, in the Upper Manawatu, one of the priority catchments (Mangatainoka), the amount of nitrogen in the river is 2.5 times the ecological limit, with 50% coming from dairy occupying less than 25% of the catchment. The One Plan has set targets for N reduction in these priority catchments (Table A1.2). Cyanobacteria, often referred to as blue-green-algae, has also been identified as an emerging issue affecting rivers and lakes in the region.

Table A1.2: One Plan Table 13-2 Cumulative nitrogen leaching maximum (kg N/ha/y) by Land Use Capability Class (LUC).

Year	LUC 1	LUC 2	LUC 3	LUC 4	LUC 5	LUC 6	LUC 7	LUC 8
1	30	27	24	18	16	15	8	2
5	27	25	21	16	13	10	6	2
10	26	22	19	14	13	10	6	2
20	25	21	18	13	12	10	6	2

1.4 Gisborne

The proposed Gisborne Regional Freshwater Plan will be publicly notified on 10 October 2015 (http://www.gdc.govt.nz/freshwater-plan/). The overall purpose of the plan is to guide the sustainable management of the region's rivers, streams, lakes, wetlands and groundwater. Two pollutants have been prioritised: pathogens (faecal coliforms) and sediment (suspended solids). Erosion creates high levels of sediment which is transported by rainfall, picks up faecal bacteria, and flows into streams and rivers. Therefore, improving water quality in this region is strongly tied to reducing erosion and reducing opportunities for faecal contamination of waterways.

River water quality is generally good in that it does not indicate high levels of nutrients, and biological indicators are generally good.

1.4.1 Erosion

Reducing erosion rates and the effects erosion has on waterways has long been a key issue, as the soft sedimentary rocks dominating in the region impose a very high erosion risk. Council's soil conservation activities seek to mitigate or prevent soil erosion caused by historical bush clearance for pastoral farming as well as more recent tree removal and earthworks.

The Sustainable Hill Country Project established the requirement for tree planting or maintaining tree cover on the most erosion-prone land. Works are to be completed and effective tree cover established by 2021. By mid-2012, 61% of properties and 90% of the land area with Land Overlay 3A requiring treatment had Works Plans completed or being progressed. The Combined Regional Land and District Plan (District Plan) requires that areas of land in Overlay 3A be treated with effective tree planting or reserve fencing.

1.4.2 Faecal coliforms

There are existing rules for riparian areas that control earthworks, vegetation clearance and structures. There is no regulation of stock access to waterways, and current rules allow stock entry to waterways. In comparison to other regions, the intensity of most farming operations would not warrant a blanket stock exclusion rule in this region.

1.4.3 Proposed freshwater targets

Most of the freshwater objectives outlined in the Proposed Gisborne Regional Freshwater plan are based on maintaining or improving nitrate, ammonia, dissolved oxygen, temperature, pH, sediment, dissolved reactive phosphorus (DRP), E.coli in rivers, and are not yet linked to farming activities. Specific Freshwater Targets have been formulated (provisionally) for three main management units (Gisborne District Council, 2015). Most of these management units target increasing dissolved oxygen levels, decreasing water temperature, reducing E.coli levels and reducing sediment loads. In the Poverty Bay Flats Freshwater Management Unit, there are also targets to reduce N and DRP concentrations. Targets are presented in the Appendix for the three main management units (Box 1A).

1.5 Environment Canterbury

Canterbury has a Land and Water Regional Plan. As well as the whole of region plan, catchment load limits are being set for each of 13 water management zones through Regional Catchment Plans and sub-catchment plans (target date 2015). The target is that by 2020, a programme will have been implemented to review existing consents where such reviews are necessary in order to achieve catchment load limits.

Many of the water management zones have been assessed and categorised as either Red (water quality not met) or as Orange (water quality at risk). The issues are predominantly N, but also relate to P, faecal indicator organisms (FIOs) and occasionally metals. Progress on environmental limit setting is variable with the four zones most advanced in the process (submission of plan and/ or decisions reached): Hurunui/ Waiau River; Hinds Plain; Selwyn-Waihora; and South Coastal Canterbury. These serve as useful indicators of likely targets across the region.

1.5.1 Hurunui/ Waiau River management zone

Phosphorus is considered to be the main contaminant of concern in this zone. Phosphorus limits are set at the 2005-10 catchment average (i.e. set for the receiving environment). Thus, P limits are at or around current values. There is some headroom for intensification, in terms of limits on N, with a 20% permissible increase in N loads at the river level. No farm limits have been set.

1.5.2 Selwyn-Waihora management zone

As with the Hurunui/ Waiau zone, the Selwyn-Waihora also is considered to be P-limited. The target reductions are:

- Reduce the receiving environment phosphorus load by 50%. Approximately half of the reduction is expected to be achieved by targeting the receiving waters (e.g., alum dosing). Although the remaining half will need to be achieved by reducing the catchment load, no specific P discharge allowances have been set because it is technically too difficult to set farm specific limits.
- For N, 'low intensity' users have some flexibility. From 2017, if nitrogen loss >15 kg N/ha/year (OVERSEER® estimates), farmers will need to achieve good management practice N loss rates for their existing (2009-13) land use. For nitrogen loss <15 kg N/ha/year, land use change is allowed, provided farmers operate at good management practice and loss rates do not exceed 15 kg N/ha/year.
- From 2022: all farms with losses of more than 15 kg N/ha/year will need to further reduce nitrogen losses (ranging from 30% for dairy to 7% for arable; Table A1.3).

Table A1.3: Percentage reduction in nitrate leaching applied for Zone Committee Solutions Package Selwyn-Waihora.

	% reduction
Land use	(nitrogen)
Dairy	30
Dairy support	22
Pigs	20
Irrigated beef, sheep or deer	13
Dryland beef, sheep or deer	2
Arable	7
Fruit, viticulture or vegetables	5
Other land use	0

1.5.3 Hinds/ Hekeao Plains management zone

The main issues in this zone relate to dairy and dairy support, with a gradual progress towards a target reduction by 2035 (Table A1.4).

Table A1.4: Target reductions (% of baseline using OVERSEER®) in required nitrogen loss rates beyond good management practice for the Hinds/ Hekeao Plains management zone.

	2020	2025	2030	2035
Dairy	15	25	35	45
Dairy support	10	15	20	25
Other agriculture	0	0	0	0

1.6 Southland

Southland is drained by four major river catchments, the Waiau, Mataura, Oreti and Aparima River. Combined, these cover 54% of the region. Pressures on water quality in Southland are mainly due to agricultural intensification, and industrial and urban waste water discharges (Environment Southland, 2015). While water quality is generally excellent in natural state areas such as Fiordland, many lowland rivers and streams show elevated levels of nutrients. Water quality issues across the region vary but include sediment, N, P and bacteria contamination. Water quality is good in conservation areas (Fiordland and Stewart Island) and in 'low intensity' (hill and high country) areas. In contrast, the Mataura and Oreti rivers are polluted often associated with the increasing pressure that growth in farming and urban communities has placed on the region's waterways.

In terms of limit setting, Environment Southland is establishing a new Water and Land Plan under a new project called: Water and Land 2020 and Beyond. The timetable for development of catchment plans is shown in Table A1.5.

Catchment	Start date
Fiordland and Stewart Island	2016
Mataura	2017
Aparima	2017
Waiau	2018
Oreti	2018

A 2-pronged approach to managing water quality is currently being pursued. The first involves the development of a set of 'Interim Measures' that are intended to "hold the line" in terms of stopping any further decline in water quality, against the backdrop of continuing changes in land use patterns and intensity. These on-farm measures are proposed as the minimum standard for operations in Southland and are being put forward to ensure that

stakeholders are in the best possible position when catchment limits will have to be set. The measures currently being considered include:

- Managing critical source areas of runoff;
- Hill country development and cultivation of steep land;
- Stock access to waterways;
- Nutrient management;
- Riparian management, and
- Managing intensive winter grazing operations.

The second approach to guide limit setting is categorizing the region into different physiographic zones. The science team at Environment Southland has identified how these zones vary according to factors such as water origin, soil type, geology and topography. Each zone is different in the way contaminants build up and move through the soil and aquifers, and into streams and rivers. This approach has provided a framework from which the council has been able to develop proposed policies and rules based on the particular issues for each zone. For example, in a zone where groundwater nitrate is the main issue, there may be more requirements around managing nitrate than in zones where nitrate is not the main issue.

2. Appendix II - Mitigations to decrease nutrient and sediment losses to water

2.1 Qualitative evaluation of individual potential mitigations

There is a range of mitigation options available that can potentially reduce sediment and nutrient losses to water. Table A2.1 presents a list of the most common approaches for meeting water quality targets. Detailed explanations of most of these mitigations and estimates of effectiveness can be found in Cairns et al. (2001), McDowell& Nash (2012) and Barber (2014).

In order to test our results from OVERSEER modelling we gathered information on the likely size of effects of individual mitigations based on results from a multi-million pound long-term project from the UK. In this work, a 'User Manual' of 83 mitigation methods was compiled and through extensive modelling (underpinned by expert opinion) an assessment of each mitigation was made for size of effect on nutrient losses to water and individual GHG emissions (Newell-Price et al. 2011; Cuttle et al. 2016). We believe this is one of the most comprehensive resources available and the farm typologies used in their assessment (and environments) map well against New Zealand enterprises and conditions.

We therefore mapped our list of proposed mitigations against this User Manual and have summarised their estimates of effect sizes in Table A2.2. We identified other mitigations that could be added to our original list (Table A2.3). There were some difficulties in mapping the User Manual mitigations against our compiled list. Some were not relevant (Table A2.4), mainly due to a large emphasis on manure management.

Table A2.1: Summary of mitigations identified, target pollutant and relevant enterprise. Coloured fills denote where the mitigation is relevant to that sector X denotes the mitigations we have focused on in our modelling.

Mitigation		Target		Sector & most appropriate mitigations						
Ŭ	Ρ	Ň	Ζ	Dairy	S&B	Arable	Hort	Forestry		
Optimum Olsen P	Х			Х		Х				
Constructed/Facilitated wetland	Х	Х		Х	Х					
Sediment traps	Х		Х		Х					
Low solubility P fertiliser	Х			Х	Х					
Reduce inputs of N fertiliser		Х		Х	Х	Х				
Temporary fencing with geotextile to intercept sediment (silt fence)	Х		Х					Х		
Fenced Riparian forest species planting	Х	Х	Х	Х	Х			Х		
Short rotation nutrient stripping forestry/energy regime	Х	Х	Х	Х				Х		
Grass buffer strips	Х	Х	Х	Х						
Account for soil mineralisation during growth period as well as for nutrients retained by catch crops		Х					Х			
Edge-of-field sediment traps/ filters	Х		Х					Х		
Tissue and Soil testing prior to fertiliser application	Х	Х				Х	Х			
Matching fertiliser applications to plant demand	Х	Х				Х	Х			
Planted forest or regeneration of native vegetation to reduce risk of soil erosion	Х		Х		Х			Х		
Open-Spaced planted trees to reduce erosion	Х	Х	Х		Х			Х		
Exclusion of heavy weight cattle rom hill and steep lands in winter months	Х		Х		Х					
Better irrigation management	Х	Х		Х		Х	Х			
Stream fencing	Х	Х	Х		Х					
Restricted grazing (Tailored to region)	Х	Х	Х	Х	Х					
Decrease stocking rate to match lower N inputs (and increased per head performance)	Х	Х	Х	Х	Х					
Change stock class	Х		Х		Х					
Change supplementary feed to Low N feed		Х		Х						
Cut and Carry	Х	Х	Х	Х						
Deferred effluent irrigation (pond storage)	Х	Х		Х						
Increased effluent application area	Х	Х		Х						
Reduce inputs of N fertiliser to winter forage crops coming out of long term pasture		Х		Х						
Strategic grazing of winter forage crops	Х		Х	Х	Х					
Alternative Wallowing	Х		Х		D					
Fence line pacing prevention	Х		Х		D					
Plant 'catch' crops and minimize fallow periods in rotations	Х	Х	Х			Х		Х		

Mitigation	1	arget		Sector & most appropriate mitigations				
	Р	Ν	Ζ	Dairy	S&B	Arable	Hort	Forestry
Minimum till	Х	Х	Х			Х		
Improve placement of fertiliser (side dressing)	Х	Х				Х		
Optimise timing of cultivation practices	Х	Х	Х			Х		
Improved residue management	Х	Х	Х				Х	
Split N fertiliser applications to match plant demand		Х				Х	Х	
Longer rotation length	Х	Х	Х					Х
Modified forest harvesting regimes	Х	Х	Х					Х
Coppicing forest species	Х	Х	Х					Х
Alum to cropland or pasture	Х			Х	Х			
Contour ploughing	Х		Х			Х		
Wheel track dyking	Х		Х			Х		
Wheel track ripping	Х		Х			Х		
Stubble mulching	Х		Х			Х		
Incorporation of manure after spreading	Х				Х	Х		
Use slow release fertiliser products, or alternate fertiliser products		Х		Х	Х	Х	Х	
Split pasture system (separate ryegrass & clover)	Х			Х	Х			

Table A2.2: Estimated size of effect based on the Defra Diffuse Pollution User Manual (Newell-Price et al. 2011; Cuttle et al. 2016). See footnotes to the Table that explain the size estimates of effects. Greyed out cells are where there was no obvious match between NZ and UK descriptions. P-P = particulate P, P-S = soluble P, Z = sediment.

			Estimated size of effects ¹							
NZ Mitigation description		UK Mitigation description	NO3-N	P-P	P-S	Ζ	NH ₃	N ₂ O	CH ₄	CO ₂ A
Optimum Olsen P	M32	Do not apply P fertiliser to high P index soils	-	L	М	-	-	-	-	-
Constructed/Facilitated wetland	M81	Establish and maintain artificial wetlands	L	М	L	Μ	-	L	L	L
Sediment traps										
Low solubility P fertiliser										
Reduce inputs of N fertiliser	M24	Reduce manufactured fertiliser application rates	L	L	L	-	L	L	-	L
Temporary fencing with geotextile to intercept sediment (silt fence)										
Fenced Riparian forest species planting										
Short rotation nutrient stripping forestry/energy regime	M3	Convert land to biomass cropping (i.e. willow, poplar, miscanthus)	М	М	L	М	L	М	L	L
	M2	Convert arable/grassland to permanent woodlands	Н	М	L	Μ	М	Н	L	L
Grass buffer strips	M14	Establish riparian buffer strips	L	М	L	Μ		L		L
Account for soil mineralisation during growth period as	(M22)	Use a fertiliser recommendation system	I.	1	I.	-		1	_	1
well as for nutrients retained by catch crops	(1122)		-	-	-		-	-		-
Edge-of-field sediment traps/ filters										
lissue and Soil testing prior to fertiliser application	1400									
Matching fertiliser applications to plant demand	M22	Use a fertiliser recommendation system	L	L	L	-	L	L	-	L
reduce risk of soil erosion	M2	Convert arable/grassland to permanent woodlands	Н	Μ	L	Μ	М	Н	L	L
Open-Spaced planted trees to reduce erosion	(M2)	Convert arable/grassland to permanent woodlands	Н	Μ	L	Μ	М	Н	L	L
Exclusion of heavy weight cattle from hill and steep lands in winter months										
Better irrigation management	M82	Irrigate crops to achieve optimum yields	М	L	-	L	-	?	-	L
Stream fencing	M76	Fence off rivers and streams from livestock	L	L	L	-	-	-	-	L
Restricted grazing (Tailored to region)	M45	Out-wintering of cattle on woodchip	L	L	L	-	??	?	?	-
	M37	Reduce field stocking rates when soils are wet	L	L	L	-	L	L	?	L
	M32	Reduce the length of the grazing day/grazing	I.	I	I				2	1
	10120	season	L	L	L	-		L	:	L

				Estim	ated s	size of e	effects ¹			
NZ Mitigation description		UK Mitigation description	NO3-N	P-P	P-S	Z	NH ₃	N ₂ O	CH₄	CO ₂ A
Decrease stocking rate to match lower N inputs (and increased per head performance)	M41	Reduce overall stocking rates on livestock farms	L	L	L	L	L	L	L	L
Change stock class										
Change supplementary feed to Low N feed Cut and Carry	M33	Reduce dietary N and P intakes	L	L	L	-	L	L	L	-
Deferred effluent irrigation (pond storage)	(M52)	Increase the capacity of farm slurry (manure) stores to improve timing of slurry applications	L	L	М	-	L	?	?	-
Increased effluent application area										
Reduce inputs of N fertiliser winter forage crops coming out of long term pasture	(M22)	Use a fertiliser recommendation system	L	L	L	-	L	L	-	L
Strategic grazing of winter forage crops Alternative Wallowing Fence line pacing prevention										
Plant 'catch' crops and minimize fallow periods in		Establish and a second state and second		5.4						
rotations	IVI4	Establish cover crops in the autumn	IVI	IVI	L	IVI	-	L	-	L
Minimum till	M7	Adopt reduced cultivation systems	L	М	L	Μ	-	L	-	L
Improve placement of fertiliser (side dressing)	M27	Use manufactured fertiliser placement technologies	L		L	-	L	L	-	L
Optimise timing of cultivation practices	M6	Cultivate land for crops in spring rather than autumn	М	М	L	-	-	L	-	-
Improved residue management Split N fertiliser applications to match plant demand Longer rotation length Modified forest harvesting regimes Coppicing forest species Alum to cropland or pasture										
Contour ploughing Wheel track dyking Wheel track ripping	M9 M11 M11 (M8)	Cultivate and drill across the slope Manage over-winter tramlines Manage over-winter tramlines	- - -	M M M	L L L	M M M		- - -		- L -
Stubble mulching	(1010)		-	IVI	L	IVI	-	L	-	L
Incorporation of manure after spreading	M73	Incorporate manure into the soil	L	L	L	-	М	?	-	-

		Estimated size of effects ¹							
NZ Mitigation description	UK Mitigation description	NO3-N	P-P	P-S	Ζ	NH ₃	N ₂ O	CH ₄	CO ₂ A
Use slow release fertiliser products, or alternate fertiliser									
products									
Split pasture system (separate ryegrass & clover)									

¹Key: L = Low = average 10% change (range 1-30%); M = Moderate = average 40% change (range 20-80%); H = High = average 70% change (range 50-90%); - = no effect; ? = $\frac{1}{2}$ Black text = reduction Red bold text = increase A: CO₂ effects exclude C sequestration

Table A2.3: Potential additional mitigations to decrease nutrient losses and GHG emissions and size of effects, based on the Defra Diffuse Pollution User Manual (Newell-Price et al. 2011; Cuttle et al. 2016). See Table 2 for key. P-P = particulate P, P-S = soluble P, Z = sediment.

Mitigation description			Estimated size of effects ¹						
		NO ₃ -N	P-P	P-S	Z	NH ₃	N ₂ O	CH ₄	CO ₂ A
M5	Early harvesting and establishment of crops in the autumn	L	М	L	Μ	-	L	-	-
M10	Leave autumn seedbeds rough	-	L	-	L	-	-	-	L
M13	Establish in-field grass buffer strips on tillage land	L	Μ	L	Μ	-	L	-	L
M15	Loosen compacted soil layers in grassland fields	-	Μ	-	Μ	-	L	-	L
M19	Make use of improved genetic resources in livestock	L	L	L	-	L	L	L	-
M20	Use plants with improved nitrogen use efficiency	L	-	-	-	L	L	-	L
M21	Fertiliser spreader calibration	L	-	-	-	-	L	-	-
M23	Integrate fertiliser and manure nutrient supply	L	L	L	-	L	L	-	L
M25	Do not apply manufactured fertiliser to high-risk areas	L	-	L	-	L	L	-	L
M26	Avoid spreading manufactured fertiliser to fields at high-risk times	L	-	L	-	L	L	-	-
M30	Incorporate a urease inhibitor with urea fertiliser	L	-	-	-	Μ	L	-	-
M31	Use clover in place of fertiliser nitrogen	L	-	-	-	М	М	-	-
M34	Adopt phase feeding of livestock	L	L	L	-	L	L	L	-
M38	Move feeders at frequent intervals	L	L	L	L	L	L	L	L
M39	Construct water troughs with a firm but permeable base	L	L	L	L	L	L	L	L
M40	Low methane livestock feeds	-	-	-	-	-	-	L	-
M56	Anaerobic digestion of livestock manures	L	-	-	-	?	?	L	L
M63	Use liquid/solid manure separation techniques	L	L	L	-	?	?	-	L
M68	Do not apply manure to high-risk areas	L	L	L	-	-	L	-	-
M77	Construct bridges for livestock crossing rivers/streams	L	L	L	-	L	-	-	-
M78	Re-site gateways away from high-risk areas	L	L	L	L	-	L	-	L

Table A2.4: UK mitigations that are marginal or not applicable to NZ mainstream farming.

- 1A Convert arable land to unfertilised and ungrazed grass
- 1B Arable reversion to low fertiliser input extensive grazing
- 12 Maintain and enhance soil organic matter levels
- 16 Allow field drainage systems to deteriorate
- 17 Maintain/improve field drainage systems
- 18 Ditch management
- 28 Use nitrification inhibitors
- 29 Replace urea fertiliser with another nitrogen form (e.g. ammonium nitrate)
- 36 Extend the grazing season for cattle
- 42 Increase scraping frequency in dairy cow cubicle housing
- 43 Additional targeted straw-bedding for cattle housing
- 44 Washing down dairy cow collecting yards
- 46 Frequent removal of slurry from beneath-slatted storage in pig housing
- 47 Part-slatted floor design for pig housing
- 48 Install air-scrubbers or biotrickling filters to mechanically ventilated pig housing
- 49 Convert caged laying hen housing from deep-pit storage to belt manure removal
- 50 More frequent manure removal from laying hen housing with belt clean systems
- 51 In-house poultry manure drying
- 53 Adopt batch storage of slurry
- 54 Install covers on slurry stores
- 55 Allow cattle slurry stores to develop a natural crust
- 57 Minimise the volume of dirty water (and slurry) produced
- 58 Adopt (batch) storage of solid manures
- 59 Compost solid manure
- 60 Site solid manure field heaps away from watercourses/field drains91
- 61 Store solid manure heaps on an impermeable base and collect leachate
- 62 Cover solid manure stores with sheeting
- 64 Use poultry litter additives
- 65 Change from a slurry to solid manure handling system
- 66 Change from a solid manure to slurry handling system
- 67 Manure spreader calibration
- 69 Do not spread slurry or poultry manure at high-risk times
- 70 Use slurry band spreading application techniques
- 71 Use slurry injection application techniques
- 72 Do not spread FYM to fields at high-risk times
- 74 Transport manure to neighbouring farms
- 75 Incinerate poultry litter for energy recovery
- 77 Construct bridges for livestock crossing rivers/streams
- 79 Farm track management
- 80 Establish new hedges
- 83 Establish tree shelter belts around livestock housing and slurry storage

The key points from this comparison with UK data indicated:

- The majority of individual mitigations are ranked as having a 'low' effect.
- There are few mitigations that result in potentially high reductions in GHG emissions. The main ones relate to tree planting, with moderate to high effects on NH₃ and N₂O emissions from these practices (M2 and M3, Table 1). *Note that this assessment excludes C sequestration effects in soil and biomass pools.*
- There are some uncertain effects and possible increases in emissions relating to restricted grazing which results from larger housing losses and the associated deferred effluent irrigation (M35, M37, M45 and M52). This is potentially important because restricted grazing is seen as an effective tool to decrease nutrient losses to water, as demonstrated in our analysis later.

- Other mitigations have potential to increase GHG emissions. These include those: that use more energy (increased CO₂ emissions), e.g. for cultivation (M4);
- that increase the potential for N₂O emissions, e.g. adoption of direct drilling where this might result in more compaction of the soil surface (M7). One anomaly stands out: where irrigation has potential to increase N₂O emissions (M82). However, this compares with a baseline of no irrigation, whereas the actual definition of our mitigation is 'better irrigation management'. Then, we would expect N₂O emissions to decrease due to better use of water and less ponding/saturated conditions.
- Use of wetlands indicates increased GHG emissions (M81). Again, this has important implications because use of wetlands is seen as a possible solution for nutrient and sediment losses to water.

2.2 Mitigation matrix

We identified from our large list of potential mitigations (Tables above) those that would most likely be used to achieve target reductions. Tables A2.5-A2.7 summarise these for key enterprises. The list is based on those that were most practical and cost effective. We have included some extreme mitigations at the end of the list: cut and carry systems and large tree-lined riparian strips.

Category	Code	Mitigation description	Comments	Information source
Efficiency gains	M1	Optimum Olsen P	Fertiliser policy to run-down excessively high soil Olsen P levels	Fertiliser consultants
Efficiency gains	M2	Low solubility P fertiliser	Use low-solubility P fertilisers on soils and in environments where it is agronomically sensible to do so	Fertiliser consultants
Efficiency gains	M3	Increased effluent application area	Increase area to avoid excessive applications of potassium	Boyes & Monaghan (2004)
Efficiency gains	M4	Reduce inputs of N fertiliser winter forage crops coming out of long term pasture; and excessive N inputs to effluent blocks	Decrease N fertiliser applications to forage crops by c.30- 40% when crop is established after long-term grass (large soil N supply from pasture residues)	Evidence based on SFF project 11/010 (Lucci et al., 2013)
Efficiency gains	M5	Strategic grazing of winter forage crops	Protect waterway and graze towards Critical Source Areas to minimise P and sediment losses in run-off	Evidence based on P21 project (Orchiston et al. 2013)
Additional infrastructure	M6	Better irrigation management	Switch from boom to centre pivot and switch to soil moisture monitoring and variable rate applications to improve water use efficiency	Wheeler (2015)
Additional infrastructure	M7	Deferred effluent irrigation (pond storage)	Have sufficient storage of effluent to allow for more timely applications, thus avoiding run-off and leaching	Houlbrooke et al. 2004
N or C capture	M8	Constructed/Facilitated wetland	Intercept surface run-off and subsurface flows to remove N and sediment	Hughes et al. (2013)
Less N in the gate	M9	Decrease stocking rate to match lower N inputs (and increased per head performance)	Less feed grown due to lower N inputs. Match stocking rate to reduced feed grown.	Evidence based on P21 project ¹
Less N in the gate	M10	Change supplementary feed to Low N feed	Switch purchased grass silage to low-N feed types such as cereal, maize or PKE	Evidence based on P21 project ¹
Additional infrastructure	M11	Restricted grazing (Tailored to region) - winter use	June/July	Evidence based on P21 project ¹
Additional infrastructure	M12	Restricted grazing (Tailored to region) - winter and autumn use	Extend back to March to capture summer urine deposition	Evidence based on P21 project
N or C capture	M13	Grass buffer strips	Only of value if soil hydrology is such that there is significant surface water flows.	
N or C capture	M14	Fenced Riparian forest species planting	Adopt the specifications proposed in ETS (30 m buffer strips and area > 1 ha)	Scion
Additional infrastructure	M15	Cut and Carry	Extreme solution: case study only	De Klein, C. A. M. and S. F. Ledgard (2001)

Table A2.5: Short-list of mitigations to achieve target reductions in N, P and sediment losses to water from dairy farms.

¹Dalley et al. 2015; Shepherd et al. 2014; Chapman et al. 2012; Monaghan & DeKlein 2014

Code	Mitigation description	Comments
DrM1	Low solubility P fertiliser	Use low-solubility P fertilisers on soils and in environments where it is agronomically sensible to do so – highly suitable in these environments
DrM2	Sediment traps	Not captured in Overseer: effect likely to be small
DrM3	Stream fencing	
DrM4	Exclusion of heavy weight cattle from hill and steep lands in winter months	
DrM5	Decrease stocking rate to match lower N inputs (and increased per head performance)	
DrM6 DrM7	Restricted grazing (Tailored to region) Wetlands	
DrM8	Fenced Riparian forest species planting	Adopt the specifications proposed in ETS (discussed in Appendix II)
DrM9	Planted forest or regeneration of native vegetation to reduce risk of soil erosion	Adopt the specifications proposed in ETS (discussed in Appendix II)
DrM10	Open-Spaced planted trees to reduce erosion	Adopt the specifications proposed in ETS (discussed in Appendix II)

Table A2.6: Candidate mitigations to achieve target reductions in N, P and sediment losses to water from sheep and beef farms

Table A2.7: Candidate mitigations to achieve target reductions in N, P and sediment losses to water from cropping and horticulture farms.

Code	Mitigation description	Comments
CrM1	Optimum Olsen P	Fertiliser policy to run-down excessively high soil Olsen P levels
CrM2	Tissue and Soil testing prior to fertiliser application	Best fertiliser practice
CrM3	Matching fertiliser applications to plant demand	Best fertiliser practice
CrM4	Split N fertiliser applications to match plant demand	Particularly on light (high risk) soils
CrM5	Improve placement of fertiliser (side dressing)	
		Switch from boom to centre pivot and switch to
CrM6	Better irrigation management	soil moisture monitoring and variable rate
0.1.17		applications to improve water use efficiency
CrM7	Minimum till	On appropriate soils (and crops)
Crivis	Optimise timing of cultivation practices	Dependent on soil-type (and crop)
CrM9	Plant 'catch' crops and minimize fallow periods in	
	IUIAIIUIIS	High oconomic risk unloss base is over fortilised
CrM10	Reduce inputs of N fertiliser	to start with
1 11 41	Account for soil mineralisation during growth period as	
HIVII	well as for nutrients retained by catch crops	
HM2	Tissue and Soil testing prior to fertiliser application	
HM3	Matching fertiliser applications to plant demand	
HM4	Better irrigation management	
HM5	Improved residue management	
HM6	Split N fertiliser applications to match plant demand	

References

Barber, N. (2014). Sediment, nutrient and runoff management and mitigation in rural catchments.

https://theses.ncl.ac.uk/dspace/bitstream/10443/2358/1/Barber,%20N.%202013.pdf

Cuttle, S. et al. (2016). A measure-centric 'User Manual' approach for the mitigation of diffuse water pollution from agriculture. Soil Use and Management, in press.

Mcdowell RW, Nash D (2012) A review of the cost-effectiveness and suitability of mitigation strategies to prevent phosphorus loss from dairy farms in New Zealand and Australia. Journal of Environmental Quality, 41, 680-693.

Newell-Price, J.P., et al. (2011). An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture. Prepared as part of Defra Project WQ0106. From: http://www.avondtc.org.uk/Portals/0/Farmscoper/DEFRA%20user%20guide.pdf

3. Appendix III - Modelling Afforestation on Farms

We used the Forest Investment Finder to estimate carbon sequestration and net present value for radiata pine afforestation on the farm types identified by AgResearch. Table A3.1 shows the farm descriptions and corresponding farm areas calculated by Scion.

						Scion farm area
Farm	Region	Soil (s)	Rainfall (s)	Topography	LUC	(ha)
Wai SB1	Waikato	Brown/Gley	900/1400	Rolling	3&4	1936
Wai SB1	Waikato	Brown/Gley	900/1400	Easy Hill	5	0
Wai SB1	Waikato	Brown/Gley	900/1400	Steep Hill	6	8252
Wai SB2	Waikato	Allophanic/Brown	900/1400	Easy Hill	5	0
Wai SB2	Waikato	Allophanic/Brown	900/1400	Steep Hill	6	18177
BoP SB1	Bay of Plenty	Pumice	1000/1800	Easy Hill	5	0
BoP SB1	Bay of Plenty	Pumice	1000/1800	Steep Hill	6&7	16090
Man SB1	Manawatu	Pallic	800/1200/1400	Easy Hill	5	207
Man SB1	Manawatu	Pallic	800/1200/1400	Steep Hill	6&7	66579
ManSB2	Manawatu	Brown/Pallic	800/1200	Rolling	3&4	9817
ManSB2	Manawatu	Brown/Pallic	800/1200	Easy Hill	5	213
ManSB2	Manawatu	Brown/Pallic	800/1200	Steep Hill	6	57472
Gis SB1	Poverty Bay	Recent	800/1400	Easy Hill	5	0
Gis SB1	Poverty Bay	Recent	800/1400	Steep Hill	6&7	67221
Gis SB2	Poverty Bay	Recent	800/1400	Easy Hill	5	same as Gis SB1
Gis SB2	Poverty Bay	Recent	800/1400	Steep Hill	6&7	same Gis SB1
Can SB1	Canterbury	Pallic/Brown	400/800	Easy Hill	5	87
Can SB1	Canterbury	Pallic/Brown	400/800	Steep Hill	7	12119
Can SB2	Canterbury	Recent	400/800	Flat	2	2764
Can SB2	Canterbury	Recent	400/800	Rolling	3	12890
Can SB2	Canterbury	Recent	400/800	Easy Hill	5	62
Can SB3	Canterbury	Recent	400/800	Flat	2	same as Can SB2
Sou SB1	Southland	Pallic/Brown	1000/1300	Flat	2	10012
Sou SB1	Southland	Pallic/Brown	1000/1300	Rolling	3	60288
Sou SB2	Southland	Pallic/Brown	800/1000	Flat	2	846
Sou SB2	Southland	Pallic/Brown	800/1000	Rolling	3&4	22609
Farm	Region	Soil	Rainfall	Topography	LUC	
Wai D2	Waikato	?	900/1400	?	?	
Wai D5	Waikato	?	900/1400	?	?	
BoP D4-5	Bay of Plenty	?	1000/1800	?	?	
BoP D6	Bay of Plenty	?	1000/1800	?	?	
Can D3	Canterbury	?	irrigated	?	?	No trees
Can D4	Canterbury	?	irrigated	?	?	No trees
Sou D3	Southland	?	800/1300	?	?	
Sou D4	Southland	?	800/1300	?	?	

Table A3.1: Farm descriptions and estimated land area.

The Scion sheep and beef farm areas used as the basis for calculating productivity, costs and revenues were selected using the following spatial data sets:

Step 1. All farms that are identified as Sheep & Beef selected from Agribase database. <u>https://www.nlrc.org.nz/resources/datasets/agribase</u>. Access to this spatial data base is on a one off fee to purchase the data at that date in time. Scion purchased this spatial data set in April 2016.

Step 2. Farms identified were then selected for each region specified. This Region dataset is available from koordinates (see link below) this is the definitive set of regional council

boundaries for 2012 as defined by the Local Government Commission and/or the territorial authorities themselves but maintained by Statistics New Zealand. <u>https://koordinates.com/layer/4240-nz-regional-councils-2012-yearly-pattern/</u>

Step 3. Each regional farm was then selected for soil. The soil data was selected from the soil fundamental data layers (available from koordinates see link below). Selections were based on prominent soil occurring within a LRI unit using the New Zealand soil classification (NZSC) field. <u>https://lris.scinfo.org.nz/layer/79-fsl-new-zealand-soil-classification/</u>

Step 4. Rain fall ranges in each area was selected using NIWA national climate maps – These are maps of average annual rainfall that have been produced for all of New Zealand, based on the 30-year period 1981–2010. These spatial data sets are available on request and payment from NIWA. For more info see https://www.niwa.co.nz/climate/research-projects/national-and-regional-climate-maps

Step 5. LUC class areas were selected using NZLRI Land Use Capability spatial layer. Data available from <u>https://lris.scinfo.org.nz/layer/76-nzlri-land-use-capability/</u> The New Zealand Land Resource Inventory (NZLRI) is a national database of physical land resource information. It comprises two sets of data compiled using stereo aerial photography, published and unpublished reference material, and extensive field work:

- 1. An inventory of five physical factors (rock type, soil, slope, present type and severity of erosion, and vegetation). A 'homogeneous unit area' approach is used to record the five physical factors simultaneously to a level of detail appropriate for presentation at a scale of 1:50,000.
- 2. A Land Use Capability (LUC) rating of the ability of each polygon to sustain agricultural production, based on an assessment of the inventory factors above, climate, the effects of past land use, and the potential for erosion. The NZLRI covers the country in 11 regions, each with a separate LUC classification.

The first edition NZLRI provides national coverage from mapping between 1973 and 1979 at a scale of 1:63,360. A limited revision regional upgrade of the north Waikato area was completed at a scale of 1:63,360 in 1983. Second edition NZLRI regional upgrades at a scale of 1:50,000 have been completed for Northland, Wellington, Marlborough and Gisborne-East Cape. Third edition NZLRI layers contained a restructured polygon attribute table to allow the core NZLRI to complement the newly created fundamental soil layers with minimal duplication.

Results of this analysis are presented in Table A1. Of note is that four farm types had no corresponding area while another two had less than 100 ha. For example, LUC 5 is uncommon nationally and was not found in Waikato or the East Coast. Consensus opinion was that forests were not compatible with irrigated dairy land on the Canterbury Plains due to the irrigators. Commercial forestry is a marginal proposition on the plains due to the low growth rates and risk of wind damage, although trees have traditionally played an important role in protecting stock and soils from wind.

The farm areas identified were used as the basis for estimating the potential carbon sequestration and profitability of radiata pine afforestation. This was modelled as an alternative to the conservative ETS lookup tables, and the approach uses spatial datasets to ensure that estimates are representative of the land actually available.

In this process:

- FIF identifies and accumulates 25m x 25m cells within farm boundaries within each farm type.
- For each cell, FIF determines the total stand carbon at the end of a 28 year rotation of the selected radiata pine regime. Four default regimes are available: pruned, structural, carbon and biomass. For this exercise we have assumed a structural regime.
- For each farm within a farm type, FIF reports the minimum, maximum and mean stand carbon at age 28, as well as the number of cells and the area. It is therefore possible to extract productivity measures for other sub-classes (e.g. mean sequestration rate on the worst and best 20% of area).
- FIF calculates the NPV of carbon net revenues using a conservative approximation. Rather than earning credits up until harvest then paying an immediate liability (due to harvest) and an ongoing liability (based on residue decay and wood product lifespans), the calculation assumes that credits are claimed and sold up to the value of half of the end of rotation carbon stock, with no future liabilities. Revenues are earned at a constant rate over the 28 year rotation with a constant annual cost of \$60 incurred to cover the administration costs (registration, filing returns) and field measurement.
- The carbon NPV calculated is much less than would be calculated if credits are sold as they are earned and a liability paid back at harvest, but the approach avoids the risk of carbon price being higher when liability payments are due. Accounting up to half of the final rotation stock is approximately equivalent to accounting up until the longterm average over two rotations.
- FIF calculates the NPV of non-carbon net revenues using spatial data sets for establishment, tending, harvest and transport costs. MPI log prices were used.

For each farm type (row) a number of metrics have been estimated for different afforestation options. MPI's ETS lookup tables have been used to provide estimates for indigenous forest and radiata pine. These are conservative estimates but provide a low cost option for landowners who can avoid the expense of establishing plots. FIF has been used to provide specific estimates for the farm type areas identified. Two alternatives are given:

- Mean sequestration rate from establishment until the year of harvest.
- Mean Sequestration rate assuming only half the total sequestration is claimed and sold. Carbon annuities presented are based on this approach, which avoids the risk from selling credits up until the year of harvest then having to pay a liability.

The data includes:

Indigenous forest:

- a) Sequestration rate (t CO₂ ha⁻¹ year⁻¹) assuming ETS Lookup table
- b) Annuity from carbon revenues (\$ ha⁻¹ year⁻¹) assuming national ETS Lookup table

Radiata pine:

- a) Sequestration rate (t CO_2 ha⁻¹ year⁻¹) assuming ETS Lookup table.
- b) Annuity from carbon revenues (\$ ha⁻¹ year⁻¹) assuming regional ETS Lookup tables.
- c) Mean Sequestration rate (t CO₂ ha⁻¹ year⁻¹) over 28 years assuming FIF productivity estimate. This addresses the question of farm emissions offset during the growing phase of a forestry crop's first rotation.

- d) Mean Sequestration rate assuming only half the total sequestration is claimed and sold. This acknowledges harvest liabilities and approximates sequestration up to the long-term average carbon stock.
- e) Annuity from carbon revenues (\$ ha⁻¹ year⁻¹) assuming only half credits are sold. This assumes a carbon price of \$15/t CO₂ and a constant annual compliance cost of \$60 ha⁻¹ (which in present value terms is similar to actual registration and compliance costs at five-yearly intervals).
- f) Annuity from timber revenues for a 28 year rotation (\$ ha⁻¹ year⁻¹).

Note: Sequestration values are calculated from carbon stock changes only – this is not a full lifecycle analysis and does not account for emissions from fossil fuels used in forest management, or "avoided emissions" through the use of wood biomass for energy.

1.1 Forestry Profitability Calculation Assumptions

All data on costs and prices are an estimate at a generic/national level. These may not represent site specific costs precisely.

Data was extracted for each sub-catchment for a blanket cover (excluding urban, water bodies and DoC areas) of *Pinus radiata* structural (framing) regime (thinned to 500 stems ha⁻¹ from initial planting of 900 stems ha⁻¹), with a rotation length of 28 years.

A discount rate of 8% was used as it broadly represents the range of discount rates used currently by forest growers for forest market valuations.

Prices for timber (Table A3.2) were based on an average price for each grade over 16 quarters (June 2012 – June 2015, inclusive) taken from MAF and Agrifax indicative domestic radiata pine log prices [1].

Regime	Discount Rate	Timber \$/tonne	Carbon \$/NZU
Structural (framing) regime	8%	S1 – \$105	\$15
(thinned to 600 spha from		S2 – \$100	
initial planting of 900 spha)		S3 – \$97	
		Pulp – \$50	

Table A3.2. Regime, log grades and carbon price

For each regime the Net Present Value (NPV) of forestry in perpetuity was determined using discounted cash flow analysis. The minimum unit of area was a 25 x 25 cell (625 m^2).

Table A3.3. Data used to estimate the financial return

Costs (C)	Revenues (R)	
Establishment (years 1,2,3 \$/625m ²)	Timber (\$/tonne)	
Silviculture (Thinning, year 7 \$/625m ²)		
Access road* construction (\$/km)		
Internal landings (\$/625m ²)	Carbon (\$/NZU)	
Internal road construction (\$/625m ²)		
Harvesting (\$/tonne)		
Transport# (\$/tonne/km)		
ETS compliance (\$/625m ²)		

1 m^3 of *Pinus radiata* timber = 1 tonne

Modelling plantation forest establishment and management costs

The cost of establishing a new plantation forest involves purchasing and planting the crop, and the control of weeds to allow maximum tree growth during the crop establishment period. Establishment costs were adjusted to allow for slope class and included planting, releasing and site preparation. Thinning costs were also adjusted for hindrance.

Estimating within plantation forest landing and road costs

Modelling the cost of landings and roads was undertaken using landing and road density estimates. The density at which landings and roads occur within a forest was assigned to slope classes 0-10, 10-20, and >20 degree slope (Table A3.4).

Classification of landing density (L_{den}) was estimated from maximum haul distance (*MHD*) associated with rubber-tyred ground-based (0-10 degree slope), tracked ground-based (10-20 degree slope), and hauler (>20 degree slope), with estimated maximum haul distances of 325 m, 350 m, and 370 m, respectively.

Slope (°)	Landing density (ha landing-1)	Road density (km ha [.] 1)
0-10	10.6	0.062
10-20	12.3	0.057
>20	13.7	0.054

Table A3.4.	Landing and	road densities	developed	across slo	be classes
1 4 5 1 6 7 10 1 11	Lananing and	roud domontroo	ao 1010 poa	40.000 0.01	00 0140000

Road density used the same slope classification as landing density, but was calculated using: $R_{den} = (MHD * 2 / L_{den}) / 1000$ (1)

The spatial datasets developed and used to estimate landing costs were grouped into three soil classes based on difficulty of earthworks, and into three slope classes (Table 3). Landing construction costs were based on expert knowledge and published reports [2] (Richardson 1989). Landing construction times were derived by soil type and slope, and costs were calculated using 2011 machine costs.

For the estimation of internal road costs, a simplified version of impedance cost was developed from three slope classes, 0-5, 5-15, and >15 degree and four classes of erosion [3] (Bloomberg, et al., 2011).

Landing density (Table A3.4) was used to calculate the number of landings required for each slope class area within each forest. The costs associated with these landing densities where portioned to the number of landings required per cell (625 m2) within each slope class.

Slope classes in Table A3.4 were also used to estimate the road density requirements on a km ha⁻¹ within a forest (Equation 1). The construction cost was then used to estimate the realistic cost of road construction within forests on a per cell basis assigned across the slope and ESC classes.

Calculation of harvesting costs

Harvesting costs (H_{cost}) were given to forests using slope classes for the North and South Islands by assigning the Agrifax value (Table A3.5). The stems per hectare to be harvested

were converted to stems per 625 m^2 cell and given the Agrifax value associated with harvesting costs. Harvesting cost was calculated using:

 H_{cost} = Yield * Agrifax value

(2)

Slope	Island	Extraction type	Agrifax value (\$)
0-10	North Island	Flat Ground-based	21
10-15	North Island	Tracked Ground-based	26
15-20	North Island	Steep Tracked	30
>20	North Island	Hauler	39
0-10	South Island	Flat Ground-based	26
10-15	South Island	Tracked Ground-based	26
15-20	South Island	Steep Tracked	31
>20	South Island	Hauler	33

Table A3.5. Estimated logging cost (\$ per tonne) by terrain/system and location

Calculating transport costs

The calculation of transport costs from the farm location to the closest destination (port, saw mill, processing plant) was undertaken on a distance basis. The total tonnage of timber produced from each cell located on the farm was multiplied by distance in kilometres and the cost of transport, estimated to be \$0.22 per km.

Development of productivity surfaces

The productivity surfaces for *Pinus radiata* [4,5,6] (Palmer et al., 2009; 2010a and 2010b) was developed by combining advanced statistical techniques with mapping technology to predict 300 Index and Site Index for any location in New Zealand. The 300 Index is an index of volume mean annual increment, and Site Index measures height at a reference age. The maps of Site Index and 300 Index were developed using growth measurement data from trees in 1,146 permanent sample plots in radiata pine stands planted between 1975 and 2003. The data was combined with a number of climate, land use, terrain and environmental variables to predict forest productivity under a range of conditions. For more details refer to Palmer et al. 2009 [4].

A purpose written python routine calculates volumes of each log grade in cubic metres ha^{-1} for a structural regime, from the 300 Index and Site Index surfaces in association with regression model coefficients. A similar routine calculates annual carbon sequestration surfaces in tonnes of CO₂.

References

- 1. MAF, *Indicative New Zealand Radiata pine log prices by quarter*. Retrieved from <u>http://www.maf.govt.nz/news-resources/statistics-forecasting/forestry/indicative-new-</u> zealand-radiata-pine-log-prices-by.aspx
- 2. Richardson P. 1989. The cost of landing formation in pumice and clay soils. LIRO Project Report No. 46. 1989
- 3. Bloomberg, M., Davies, T., Visser, R., Morgenroth, J., 2011. Erosion Susceptibility Classification and Analysis of Erosion Risks for Plantation Forestry. Ministry for the Environment Report.
- 4. Palmer, D.J., Höck, B.K., Kimberley, M.O., Watt, M.S., Lowe, D.J., Payn, T.W., 2009. Comparison of spatial prediction techniques for developing Pinus radiata surfaces across New Zealand. Forest Ecology and Management, 258: 2046-2055.

- 5. Palmer, D., Watt, M., Kimberley, M., Höck, B., Payn, T., Lowe, D., 2010a. Mapping and explaining the productivity of Pinus radiata in New Zealand. New Zealand Journal of Forestry 55, 15-21.
- Palmer, D., Watt, M., Kimberley, M., Höck, B., Payn, T., Lowe, D., 2010b. Mapping the productivity of Pinus radiata in New Zealand. New Zealand Tree Grower 31, 18-19.

4. Appendix IV – Enterprises

Table A4.1: Details (annual data) of the Waikato region dairy systems, including support land.

Region:	Waikato	Waikato
Farm area platform (ha) ¹	150.5	159.9
Farm area support (ha) ¹	11.1	30.6
Peak cow numbers ¹	420	477
Stock rate (cows/ha) ¹	2.79	2.98
Lactation length (days) ¹	233	240
Fertiliser inputs (kg N /ha) ¹	113	134 kg N
Cow wintering strategy ³	pasture + feedpad for supplements	on farm
Variants: Rainfall ²	900 - 1400	900 - 1400
Variants: Soil type ²	Brown; Allophanic	Brown; Allophanic
Variants: Slope ²	Flat and rolling	flat
Crop block	5	
Crop type ³	maize silage	maize silage
Crop consumed (t DM) ³	65	376
Assumed crop yield (t DM/ha)4	20	20
Grazing months ³	fed as supplement (winter and shoulders)	fed as supplement (winter and shoulders)
Support block (including area for		
young stock)		
Crop type ³	Baleage	Baleage
Crop consumed (t DM) ³	65	376
Assumed crop yield (t DM/ha)4	15	15
Area for young stock ³	0	0
Production (kg MS/y) ¹	137,340	188,415
Production (kg MS/cow/y) ¹	327	395
Production system	2	5

Region:	ВоР	ВоР
Farm area platform (ha) ¹	142.8	131.5
Farm area support (ha) ¹	28.3	26.2
Peak cow numbers ¹	439	387
Stock rate (cows/ha) ¹	3.1	2.94
Lactation length (days) ¹	251	252
Fertiliser inputs (kg N /ha)1	130	122
Irrigation (mm/y)	0	100-200
Irrigation area (% platform) ¹	-	14%
Cow wintering strategy	pasture + feedpad for supplements	pasture + feedpad for supplements
Imported supplements: by-product (t)	600 t PKE	None
Variants: Rainfall ²	1000-1800	1000-1800
Variants: Soil type ²	Brown; Pumice; Recent	Pumice; Recent
Variants: Slope ²	flat and rolling	flat and rolling
Crop block		
Crop type ³	maize silage	maize silage
Crop consumed (t DM) ³	262	119
Assumed crop yield (t DM/ha) ⁴	20	20
Grazing months ³	fed as supplement (winter and shoulders)	fed as supplement (winter and shoulders)
Support block (including area for		
young stock)		
Crop type ³	Baleage	Baleage
Crop consumed (t DM) ³	262	119
Assumed crop yield (t DM/ha) ⁴	15	15
Area for young stock ³	0	0
Production (kg MS/y) ¹	198,428	154,413
Production (kg MS/cow/y) ¹	452	399
Production system	4/5 (high)	3

Table A4.2: Details of the dairy enterprises in the Bay of Plenty (BoP) region, including support land.

Region:	Canterbury	Canterbury
Farm area platform (ha) ¹	220.0	211.1
Farm area support (ha)1	55.7	60.3
Peak cow numbers ¹	780	752
Stock rate (cows/ha) ¹	3.5	3.56
Lactation length (days) ¹	257	258
Fertiliser inputs (kg N /ha)1	233	241
Irrigation (mm/y)	400-600	400-600
Irrigation area (% platform)	100%	100%
Cow wintering strategy	on crop late May- early Aug	on crop late May- early Aug
Variants: Rainfall ²	400-800	400-800
Variants: Soil type ²	Recent (stony); Brown; Gley	Recent (stony); Brown
Variants: Slope ²	flat	flat
Crop block (rotating)		
Crop type ³	Kale	Kale
Crop consumed (t DM) ³	159	275
Assumed crop yield (t DM/ha) ⁴	15	15
Grazing months ³	May- Aug	May- Aug
Support block (including area for		
young stock)		
Crop type ³	Baleage	Baleage
Crop consumed (t DM) ³	129	649
Assumed crop yield (t DM/ha)4	14	14
Grazing months ³	Sent to platform and winter crop	Sent to platform and winter crop
Area for young stock ³	16	24
Production (kg MS/y) ¹	318,240	324,864
Production (kg MS/cow/y) ¹	408	432
Production system	3	4

Table A4.3: Details of the dairy enterprises in the Canterbury region, including support land.

Region:	Southland	Southland
Farm area platform (ha) ¹	239.1	213.3
Farm area support (ha) ¹	111.8	96.8
Peak cow numbers ¹	660	638
Stock rate (cows/ha) ¹	2.76	2.99
Lactation length (days) ¹	253	261
Fertiliser inputs (kg N /ha)1	140	146
Cow wintering strategy	off farm 2 months	cows off farm in June and on feedpad (1h/d) from July to Oct
Imported supplements by-product (t DM)	3t brewers grain	4t brewers grain + 354t PKE
Variants: Rainfall ²	800-1300	800-1300
Variants: Soil type ²	Brown; Pallic	Brown; Pallic
Variants: Slope ²	flat	flat
Crop block (rotating)		
Crop type ³	Swedes	Swedes
Crop consumed (t DM) ³	264	126
Assumed crop yield (t DM/ha)4	13	13
Grazing months ³	June-July	June-July
Support or runoff block 2		5
(including area for young stock)		
Crop type ³	Pasture silage	Pasture silage
Crop consumed (t DM) ³	94	184
Assumed crop yield (t DM/ha) ⁴	12	12
Grazing months ³	Sent to platform and winter crop	Sent to platform and winter crop
Area for young stock ³	25	25
Production (kg MS/y) ¹	279,180	279,444
Production (kg MS/cow/y) ¹	423	438
Production system	3	4

Table A4.4: Details of the dairy enterprises in the Southland Region.

Table A4.5: Details of the dairy goat enterpr	rise for the Waikato region, including support land
from Ganche et al. (2015).	

Region:	Waikato
Farm area platform (ha)	40
Farm area support (ha)	7
Perennial pasture	Ryegrass +White clover and Lucerne (65/35)
Peak numbers	600
Stock rate (doe/ha)	15
Lactation length (days)	289
Effluent system	Daily spray from sump; mostly solid spreading
Fertiliser inputs (kg N/ha)	150
Structures	Housed in barn year round
Imported supplements by-product (t)	3t Dried distillers grain
Variants: rainfall	900-1400
Variants: Soil type	Brown; Allophanic
Variants: slope	Flat to rolling
Support block	
Crop type	Maize grain
Prior land use	maize
Planting month	October
area (ha)	7
Production (kg MS/y)	45000
Production (kg MS/doe/y)	75
System	Fresh forages-based

Table A4.6: Details of the sheep and beef enterprises in the Waikato and Bay of Plenty (BoP) regions.

Region:	Waikato	Waikato	BoP
Effective area (ha)1	251	586	345
Crop area (ha) ¹	22	0	0
Sheep SU ¹	585	2627	1560
Cattle SU ¹	2047	1962	1823
Overall SU/ha ¹	10.5	7.8	9.8
Sheep:cattle ratio ¹	22	57	46
Variants: Soil type ²	Brown; Gley	Brown; Allophanic	Pumice
Variants: rainfall ²	900-1400	900-1400	1000-1800
Eartilizar inputs (ka/ba)	12.4 kg N;	6.5 kg N;	10 kg N;
renniser inputs (ky/na)	19 kg P	15 kg P	18 kg P
Irrigation (mm)	-	-	-
Variant: Slope ²	Easy hill to hard hill	Hard hill	easy hill and hard hill
Class ³	5	3	4

¹ Beef + Lamb 2015a; ²Spatial information; ³Beef + Lamb farm classes (Beef + Lamb 2015b)

Region:	Manawatu	Manawatu	Gisborne	Gisborne
Effective area (ha) ¹	922	195	944	375
Crop area (ha) ¹	7	4	5	9
Sheep SU ¹	4630	1286	4187	1942
Cattle SU ¹	2297	741	3154	1374
Overall SU/ha1	7.5	10.4	7.8	8.8
Sheep:cattle ratio ¹	67	63	57	59
Variants: Soil type ²	Brown	Pallic; Brown	Brown	Brown
Variants: rainfall ²	800-1400	800-1401	800-1400	800-1401
Fertiliser inputs	E ka N/: 0 ka D	5 kgN/ha; 13 kg	4 kg N/ha; 10 kg	6 kg N/ha; 11
(kg/ha)1	5 KY W, 9 KY P	P/ha	P/ha	kgP/ha
Variant: Slono?	easy hill and hard	Rolling, easy hill	easy hill and hard	easy hill and hill
vananii. Siupe-	hill	(20/40/40)	hill (50/50)	(50/50)
Class ³	3	5	3	4

Table A4.7: Details of the sheep and beef enterprises in the Manawatu and Gisborne regions.

¹Beef + Lamb 2015a; ²Spatial information; ³Beef + Lamb farm classes (Beef + Lamb 2015b)

Table A4.8: Details of the sheep and beef enterprises in the Canterbury region.

Region:	Canterbury	Canterbury	Canterbury
Effective area (ha) ¹	7929	394	427
Crop area (ha) ¹	12	13	177
Sheep SU ¹	7481	2097	1864
Cattle SU ¹	2193	1124	1292
Overall SU/ha ¹	1.2	8.2	7.4
Sheep:cattle ratio ¹	77	65	59
Variants: Soil type ²	Pallic; Brown	Recent	Recent
Variants: rainfall ²	400-800	400-800	400-800
Fertiliser inputs (kg/ha)1	2 kg N; 2 kg P	8 kg N; 8 kgP/ha	10 kg N; 4 kg P
Variant: Slope ²	hill and steep	flat; rolling; hill (50/37/13)	flat
Class ³	1	6	8

¹Beef + Lamb 2015a; ²Spatial information; ³Beef + Lamb farm classes (Beef + Lamb 2015b)

Table A4.9: Details of the sheep and beef enterprises in the Southland region.

Region:	Southland	Southland
Effective area (ha) ¹	230	527
Crop area (ha) ¹	10	4
Sheep SU ¹	2500	3372
Cattle SU ¹	222	811
Overall SU/ha ¹	12	8.0
Sheep:cattle ratio ¹	92	81
Variants: Soil type ²	Pallic; Brown	Pallic; Brown
Variants: rainfall ²	1000-1300	800-1000
Fertiliser inputs (kg/ha) ¹	9 kg N; 15 kg P	8 kg N/ha; 11 kg P/ha
Variant: Slope ²	flat and rolling	flat and rolling
Class ³	7	6

¹Beef + Lamb 2015a; ²Spatial information; ³Beef + Lamb farm classes (Beef + Lamb 2015b)

Region:	Southland
Effective area (ha)	285
Crop area (ha)	16
Perennial pasture	Perennial ryegrass + white clover
Sheep SU	1995
Cattle SU	570
Deer SU	1710
Overall SU/ha	15.0
Variants: Soil type	Pallic; brown
Variants: rainfall (mm)	1000-1400
Fertiliser inputs N and P	only to crop DAP 250 kg/ha Nov; Urea 100 kg/ha Jan
Imported supplements	None
Variant: Slope	50% flat, 40% easy rolling, 10% hill

Table A4.10: Details of the deer enterprise in the Southland region from Wall (Pers. Comm 2015).

Table A4.11: Details of the Horticultural enterprises to be modelled for the Bay of Plenty region

Region:	Bay of Plenty	Bay of Plenty	Bay of Plenty
Crop	Kiwifruit	Kiwifruit	Avocado
Management	Integrated	Organic	
Sward management	herbicided rows	full pasture (mowed)	full pasture (mowed)
	pasture (mowed)		
Pruning	mulched (twice)	mulched (once)	mulched
management			
Fertiliser inputs			
Foliar spravs	10-20 kg/ha Low Biuret Urea	-	100 kg/ha Low-Biuret Urea +
	(twice)		0.5% Magnesium Sulphate in
			>1500 l/ha (as required June-
			Aug)
			Zinc and Boron foliar sprays at
			critical stages of flowering as
			required
Ground fertilisation	450 kg/ha CAN total (300 kg/ha	600 kg/ha Fishmeal	30 kg/ha Potassium nitrate
	III August, 150 kg/lia ili November)		(August)
	175 kg/ba Muriate of Potash	100 kg/ba Muriate of Potash	Lime as required to adjust nH
	(August)	Too kg/ha Manate of Fotash	(Sept)
	350 kg/ha Sulphate of Potash	200 kg/ha Sulphate of Potash	200 kg/ha Gypsum (Sept)
	(August)		
	200 kg/ha 30% Serpentine	600 kg/ha Biophos	400 kg/ha single
	Super (August)		Superphosphate (Sept)
	225 kg/ha Kieserite (August)	200 kg/ha Kieserite	75 kg/ha Kieserite + 25 kg/ha
			Zinc Sulphate (Sept)
	(5 t/ha Compost)	10 t/ha Compost	100 kg/ha Cuttings Avocado
			Regular Tree Mix (monthly from
	$(400 \text{ kg/b} \text{ Lim}_{0})$	2 t/ba Vormicast	September to March)
		5 tha vernicast	(May)
Irrigation system	None	None	None
Crop Yield	40-50000 kg/ha @ 16.5% DM	28-34000 kg/ha @ 16.5% DM	12000 kg/ha
1	(cultivar-dependent)	(cultivar-dependent)	
Variants: soil type	Allophanic, Pumice	Allophanic, Pumice	Allophanic, Pumice
Variants: rainfall	1100 - 1650	1100 - 1650	1100 - 1650

Gisborne
Viticulture
Vinegrapes (Chardonnay)
full pasture (mowed)
Pruning in June, mulched
-
-
15 t/ha @ 12% MC content
Recent, Gley
800-1100

Table A4.12: Details of the Horticultural enterprises to be modelled for the Gisborne region.

Table A4.13: Details of the arable	crop rotation for	r the Manawatu region.

Region	Manawatu	
Crop rotation	Potatoes - Barley - Lettuce - Green oats	
Cron 1	Potatoes	
Planting	October	
Cultivation		
Fortilisor inputs	500 ka/ba Nitrophoska total (split)	
Irrigation system	as required (travelling irrigator)	
Hanvost	April	
Viold	50-60 t/ba	
Crop 2	Barley	
Dianting	April	
Cultivation	Minimum tillage	
Fertiliser innuts	600 kg/ha DAP (split application 60.400)	
r cruiiser inputs	630 kg/ha CAN in January	
Irrigation system	None	
Hanvest	lanuary	
Vield	8-10 t/ba	
Crop 3	Lettuce	
Planting	Eehruary	
Cultivation	Discing	
Fortilisor inputs	8/0 kg/ha Nitronhoska Blue TE handed dresssing	
Irrigation system	as required (travelling irrigator)	
Hanvest	Anril	
Vield	32 t/ha FW	
Cron 4	Green oats	
Planting	May	
Cultivation	Minimum tillage	
Fertiliser inputs	-	
Irrigation system	None	
Harvest	Sentember	
Yield	spraved ploughed in	
Variants: soil type	Recent Brown (Glev)	
Varianta, reinfall		
Region:	Gisborne	Gisborne
---------------------	--	--
Model enterprise	Vegetable Cropping	Arable cropping
Crop rotation	Summer Broccoli - Winter lettuce	Grain maize-Squash
Crop 1	Summer broccoli	Grain maize
Planting	October	October
Cultivation	Minimum tillage	Minimum tillage
Fertiliser inputs	150 kg/ha Sulphate of ammonia (pre-planting)	250 kg/ha Cropmaster 20 at planting
	300 kg/ha Potash Gold (at planting)	250 kg/ha Urea side dressing
	150 kg/ha CAN side dressing	
Irrigation system	30 mm every 14 days as required - travelling boom irrigator	None
Harvest	February	May - June
Yield	10 t/ha	12 ť/ha @ 18-24% MC
Crop 2	Winter lettuce	Squash
Planting	April	October
Cultivation	Minimum tillage	Intensive cultivation
Fertiliser inputs	400 kg/ha Nitrophoska Blue at	200 kg/ha Cropmaster 20 at
	pianting	pianting 200 ka/ba Uroa sido drossing
	80 kg/ha Urea side dressing	(November)
Irrigation system	None	as required per soil water balance
Harvest	September	February - March
Yield	25 t/ha @ 7% DM	15 t/ha @ 35% MC
Variants: soil type	Recent	Recent
Variants: rainfall	800-1100	800-1100

Table A4.14: Details of the arable crop rotation for the Gisborne area.

Region:	Canterbury	Canterbury
Crop rotation	Maize-Wheat-Kale-Triticale	Barley - Oats + Italian ryegrass - Barley
Crop 1	Maize silage	Barley
Planting	October	October
Cultivation	Intensive cultivation	Intensive cultivation
Fertiliser inputs	240 kg/ha Nitrophoska at sowing	150 kg/ha CropMaster 15 at sowing
	50 kg N/ha (urea) at sowing	50 kg N/ha (split)
	100 kg N/ha (urea) during growth	
Irrigation system	centre pivot	centre pivot
Harvest	March-April	January
Yield	23 t DM/ha	16 t DM/ha
Crop 2	Wheat	Oats + Italian Ryegrass
Planting	March	February-March
Cultivation	Intensive cultivation	Minimum tillage
Fertiliser inputs	160 kg/ha CropZeal20N at sowing	200 kg/ha CropZeal20N at sowing
		50 kg N/ha (split)
Harvest	October	October
Yield	6 t DM/ha	7 + 0.3 t DM/ha
Crop 3	Kale	Barley
Planting	October	October
Cultivation	Intensive cultivation	Intensive cultivation
	240 kg/ha DAP + 15 kg/ha Boronate	
Fertiliser inputs	at sowing	150 kg/ha CropMaster 15 at sowing
	200 kg N/ha (urea) during growth	50 kg N/ha (urea, twice during growth)
Harvest	March - April	January
Yield	21 t DM/ha	16 t DM/ha
Crop 4	Triticale	
Planting	–March - April	
Cultivation	Intensive cultivation	
Fertiliser inputs	160 kg/ha CropZeal20N at sowing	
Harvest	September - October	
Yield	4 - 5 t DM/ha	
Variants: soil type	Brown, Pallic, Recent	Brown, Pallic, Recent
Variants: rainfall	500-800	500-800

Table A4.15: Details of the arable crop rotations for the Canterbury region.

Crop rotation	Maize-Annual Ryegrass	Potatoes-Onion-Carrots-Squash- Oats&Rye-Barley-Oats&Rye		
Crop 1	Maize silage	Potatoes		
Planting	October	September		
Cultivation	Discina	Intensive cultivation		
Fertiliser inputs	200-300 kg/ha DAP at planting	200 kg N/ha at planting		
i entineer inpute	200-300 kg/ha Urea side dressing	100 kg N/ha side dressing (split)		
Irrigation system	None	Centre Pivot		
Harvest	March	March		
Vield	22-26 t/ha @ 32-38% DM	50 t/ha		
Cron 2		Onion		
Planting	Anril	lune		
Cultivation	Direct Drill	Intensive cultivation		
Cultivation	50 kg/ba Uroa (aftor oach	50 kg N/ba ovoply spacod throughout		
Fertiliser inputs	arazina)	growth		
	grazing)	Glowin E0 kg N/ba		
		10 kg N/ba (uroa)		
Irrigation system	Nepo	40 Ky Wild (uled)		
IIIyaliuli Systelli Hanvast	NULLE Sontombor Octobor	as required		
Malvesi		AE t/ba		
Crop 2	10 - 13 (/lla	45 VIId		
Clup 3		Callois		
Cultivation		Intensive cultivation		
Cullivation		111011SIVE CUILIVALION		
Fertiliser inputs		120 kg N/ha (spiil) 40 kg D/ba		
llenveet		40 Ky P/IId October		
Malvesi				
rieiu Cron 4		ou i/ild		
Clup 4		Syuasii November		
Planung		November Minimum tillaga		
Cullivation Fortilicor inpute		Willing Who at planting		
Fertiliser inputs		ou ky ivila at planting Marah		
Halvest				
Crop 5		Uats & rye		
Planung		April Direct drill		
Harvest		June		
Yield		piougnea in Dealers		
Crop 6		Barley		
Planung		JUIY Direct drill		
		Direct anii 270 km/km CANL Optober		
Fertiliser inputs		370 kg/na CAN October		
Henrich		370 kg/ha CAN November		
Harvest		February		
Yield		/ t/ha		
Crop /		Uais & rye		
Planting		Warch		
Cultivation		Direct drill		
Irrigation		None		
Harvest		July		
Yield		ploughed in		
variants: soil type	Brown, Allophanic	Brown, Allophanic, Granular		
variants: rainfall	900-1400	900-1400		

Region:	Southland	Southland
Model enterprise	Arable cropping	Vegetable cropping
Crop rotation	Forage brassica-Cereals-Potatoes	Potatoes-Carrots
Crop 1	Kale	Potatoes
Planting	December	August
Cultivation	Direct drill	Intensive cultivation
Fertiliser inputs	50 kg/ha triple superphosphate	200 kg N/ha
	150 kg/ha Urea	100 kg N/ha side dressing (twice, spaced out 6 weeks)
	150 kg/ha Urea	
Irrigation system	None	None
Harvest	May	March
Yield	13 t/ha DM	45 t/ha
Crop 2	Barley	Carrots
Planting	June	Мау
Cultivation	Direct drill	Intensive cultivation
Fortilicor inpute	270 kg/ba CAN Octobor	120 kg N/ha (split)
renniser inputs	STU KYHA CAN OCIODEI	40 kg P/ha
	370 kg/ha CAN November	
Harvest	February	October
Yield	6 t/ha	60 t/ha
Crop 3	Oats & rye	
Planting	March	
Cultivation	Direct drill	
Fertiliser inputs	-	
Harvest	July	
Yield	ploughed in	
Crop 4	Potatoes	
Planting	August	
Cultivation	Intensive cultivation	
Fertiliser inputs	200 kg N/ha	
	100 kg N/ha side dressing (twice, split)	
Harvest	February - March	
Yield	45 t/ha	
Variants: soil type	Brown, Pallic	Brown, Pallic
Variants: rainfall	800-1300	800-13000

Table A4.17: Details for the arable cropping rotations for the Southland region.

Region:	Bay of Plenty/Gisborne	Bay of Plenty/Gisborne	Bay of Plenty/Gisborne
Crop	Radiata Clearwood	Radiata Framing	Radiata Pulp
Rotation length	28	28	25
(yr)			
Planting density	833 - 1100	833 - 1100	1000 - 1300
(spha)			
Cultivation	Dependent on topography,	Dependent on topography,	Dependent on topography,
	soil, veg cover, area. But	soil, veg cover, area. But	soil, veg cover, area. But
	could include:	could include:	could include:
	Deep ripping, rotary slashing,	Deep ripping, rotary slashing,	Deep ripping, rotary slashing,
	root-raking, roller or blade	root-raking, roller or blade	root-raking, roller or blade
	crushing, windrowing	crushing, windrowing	crushing, windrowing
Fertiliser inputs	n/a	n/a	n/a
Herbicide	Pre plant mid-autumn	Pre plant mid-autumn	Pre plant mid-autumn
application	1 or 2 releases	1 or 2 releases	1 or 2 releases
Pruning	1 st year 3	n/a	n/a
management	2 nd year 5		
	3 rd year 8		
Foliar sprays	Cu for dothistroma control	Cu for dothistroma control	Cu for dothistroma control
Waste thinning	Year 7	Year 7	Year 7
Final stocking	350	450	500
(spha)			
Variants: soil type	Allophanic, Pumice, Recent,	Allophanic, Pumice, Recent,	Allophanic, Pumice, Recent,
	Brown	Brown	Brown
Rainfall (mm)	1100 - 1650	1100 - 1650	1100 - 1650

Table A4.18: Details of the Radiata based Forestry enterprises to be modelled for the Bay of Plenty and Gisborne region.

Table A4.19. Details of the Douglas fir (D.Fir), Eucalypt and Redwood based Forestry enterprises to be modelled for the Bay of Plenty and Gisborne region.

Region:	Bay of Plenty/Gisborne	Bay of Plenty/Gisborne	Bay of Plenty/Gisborne		
Crop	D.Fir framing	Eucalypt Pulp	Redwood sawlogs		
Rotation length (yr)	45	15-20	35		
Planting density (spha)	1600	1100	500		
Cultivation	Dependent on topography, soil, veg cover, area. But could include: Deep ripping, rotary slashing, root-raking, roller or blade crushing, windrowing	Dependent on topography, soil, veg cover, area. But could include: Deep ripping, rotary slashing, root-raking, roller or blade crushing, windrowing	Dependent on topography, soil, veg cover, area. But could include: Deep ripping, rotary slashing, root-raking, roller or blade crushing, windrowing		
Fertiliser inputs	n/a	n/a	n/a		
Herbicide application			Pre plant mid-autumn 1 st release year 1 2 nd release year 2		
Pruning management	n/a	n/a	1 st year 7 2 nd year 9 3 rd year 11		
Thinning regimes	One thin age 14-16	n/a	Self-thinning		
Final stocking (spha)	600	1100	400-500		
Irrigation system	None	None	None		
Variants: soil type	Allophanic, Pumice, Recent, Brown	Allophanic, Pumice, Recent, Brown	Allophanic, Pumice, Recent, Brown		
Rainfall (mm)	1100 - 1650	1100 - 1650	1100 - 1650		

5. Appendix V – Mitigation options for arable and vegetable farms

Table A5.1: List of mitigation strated	lies to achieve target reduction	s in N, P and sediment losses to	water from arable cropping.
· · · · · · · · · · · · · · · · · · ·	,	· · · · · · · · · · · · · · · · · · ·	

Mechanism	Rank	OVS*	Mitigation description	Comments	Information source/ Evidence	Proposed change to typical rotations in Table 2
Lower N input	1	Ν	Matching fertiliser applications to plant demand	Requires good understanding of development of plant demands throughout the year; also opportunity for fine scale management of spatial aspects of fertiliser placement using PA approaches	By how much can current average application rates be reduced without inferring yield losses?	Expert estimates: Grain maize -5%; Silage maize -20%; Waikato vegetable cropping as changed in Table 2
Lower N input	1a	Ν	Account for soil mineralisation during growth period and for nutrients retained by catch crops	Requires good understanding of nutrient mineralisation capacity of the soil throughout the year	AMN, depending on soil type and previous land use, soil can mineralise between 20 and 200 kg N/ha year; timing of mineralization mainly dependent on soil temperature and moisture	
Lower N input	1b	Ν	Soil testing prior to fertiliser application	May help in deciding plant requirements	Deep mineral N	
Improve N efficiency	2	Y/N	Split N fertiliser applications to match plant demand; fertigation to apply little amounts of fertiliser often	Particularly in light (high risk) soils; fertigation is possible through pivot; unirrigated crop further splitting might be difficult	r in light (high risk)Splitting can reduce Nation is possibleleaching (Williams et al.,rot; unirrigated crop2003)tting might be difficult	
Improve N efficiency	3	Ν	Improve placement of fertiliser (broadcast or knifing of fertiliser)	Direct impact of N losses	Placement can reduce N leaching in particular for plants with sparse rooting system (Williams et al., 2003)	

Mechanism	Rank	OVS*	Mitigation description	Comments	Information source/ Evidence	Proposed change to typical rotations in Table 2
Improve P efficiency	4	Y	Manage soil P levels within acceptable productivity norms (e.g., maize 15-30 mg/L Olsen-P)	Apply P fertiliser only when soil tests indicate the need, reduced soil P levels will reduce risk of P losses in runoff		
Improve efficiency	5	N	nprove selection of fertiliser material (controlled lease fertilisers; CRFs) Requires good understanding of plant demands throughout the year and clear understanding of when the nutrient is released in dynamic environment (soil moisture and temperature)		According to FAR on- going research is promising; CRFs can reduce leaching, particularly in areas with high rainfall (Martin et al., 2001)	Rule of thumb: to make the use of CRFs economically viable, need to reduce fertiliser use by about 25%
Immobilise soil N after harvest	6	Y	Improve residue management		Contrasting results on straw incorporation (Thomsen and Christensen, 1998)	
Lock up available P in plant tissues, avoid build-up of soil N after harvest	7	Y/N	Plant 'catch' crops (CC) or double-sown crops and minimize fallow periods in rotations	Stabilise soils and reduce risk of runoff and erosion during high rainfall in winter	N-uptake of CC: 200-300 kg/ha; CC reduced nitrate leaching by 53% (Fraser et al., 2012)	
Improve N/P efficiency – might need additional infrastructure	8	Y	Better irrigation management: match irrigation supply with infiltration rates (will vary with soil type and condition)	Switch from boom to centre pivot, soil moisture monitoring, variable rate applications to improve water and nutrient use efficiency		
Reduced erosion risk, slower N mineralisation	9	Y	Use reduced cultivation practices, such as minimum till or direct drill	Improve aggregation of soils through plant roots, reduce mineralisation losses, on appropriate soils (and crops) – contrasting results possible (Di and Cameron, 2002; Francis, 1995)		Some changes are suggested to current management practices in Table 2

Mechanism	Rank	OVS*	Mitigation description	Comments	Information source/ Evidence	Proposed change to typical rotations in Table 2
Avoid build-up of soil	10	Y	Optimise timing of cultivation practices (early harvest,	Dependent on soil-type (and cron)		
			shorten fallow period)	N mineralisation after		
			1 /	cultivation/ fallow (March much		
				higher than for May ploughing)		
Conturo of codimont	11	V	Vegetated filter string as attenuation zenos to conture	(FIdilus, 1995)	Not much ccopo?	
& P	11	Ĭ	surface runoff and allow sediment to settle out	topography vegetation in	Not much scope?	
u i				buffer, width of buffer, buffer :		
				field ratio etc.		
Efficiency gain	12	Ν	Wheel track ripping or furrow dyking	Heavier soils where infiltration	Localised, not much	
				is reduced due to compaction	scope?	
Efficiency gain	13	Ν	Use precision cropping technologies for fertiliser	Delivers more precise nutrient	High scope	
			application (GPS guidance); Calibration of fertiliser	inputs, upgrade of technology		
			spreader	needed		

*Included in current version of Overseer

Region:	Manawatu	Gisborne	Gisborne	Gisborne	Canterbury	Canterbury	Waikato	Waikato	Southland	Southland
Model		Vegetable	Arable	Arable	Arable	Arable	Arable	Vegetable		Vegetable
enterprise	Arable cropping	Cropping	cropping	cropping	cropping	cropping	cropping	cropping	Arable cropping	cropping
Crop	Potatoes - barley - spring onion-green	Summer Broccoli - Winter	Grain maize- Squash (include cover crops after both crops; e.g., annual prograss)	Grain maize- Grain maize	Maize-wheat-	Barley - Oats + italian RG - Barley	Maize- annual	Potatoes- onion- carrots- squash- oats&rye- barley- oats&rye	Forage brassica-	Potatoes-
Totation	outo	Summer	Tjograssy	Graintinaizo		Dunity	Tjogrado	outourjo		Guilloto
Crop 1	Potatoes	broccoli	Grain maize	Grain maize	Maize silage	Barley	Maize silage	Potatoes	Kale	Potatoes
Planting	October	October	October	October	October	October	October	September	December	August
Cultivation	IC (intensive cultivation)	MT (minimum tillage)	MT	MT	IC (MT)	IC (MT)	discing (MT or DD)	IC	DD (direct drill)	IC
Fertiliser inputs	500 kg/ha Nitrophoska total (split application: at planting & 1-2 side dressing)	300 kg/ha Potash Gold	250 (235) kg/ha Cropmaster 20	235 kg/ha Cropmaster 20	240 (200) kg/ha Nitrophoska	150 kg/ha CropMaster 15	250 (200) kg/ha DAP	200 (100) kg N/ha	50 kg/ha triple superphosphate	200 kg N/ha
		150 kg/ha CAN side dressing	250 (235) kg/ha Urea side dresssing	235 kg/ha Urea side dresssing	50 (40) kg N/ha (urea)	50 kg N/ha (urea, twice during growth)	250 (200) kg/ha Urea	100 (50) kg N/ha side dressing (twice, spaced out 6 weeks)	150 kg/ha Urea	100 kg N/ha side dressing (twice, spaced out 6 weeks)
					luo kg N/ha (urea)				150 kg/ha Urea	

Table A5.2: Typical example scenarios for arable cropping. Management in red & brackets represents proposed mitigation strategies.

Region:	Manawatu	Gisborne	Gisborne	Gisborne	Canterbury	Canterbury	Waikato	Waikato	Southland	Southland
		30 mm every								
		14 days as								
	as required	required -								
Irrigation	(travelling	travelling			as required	as required				
system	irrigator)	irrigator	None	None	(centre pivot)	(centre pivot)	None	as required	None	None
								March (Feb-		
Harvest	April	February	May - June	Мау	March-April	January	March	May)	May	March
							22-26 t/ha			
			12 t/ha @	12 t/ha @ 18-			@ 32-38%	50-60 (30-		
Yield	50-60 t/ha	10 t/ha	18-24% MC	24% MC	23 t DM/ha	16 t DM/ha	DM	80) t/ha	13 t/ha DM	45 t/ha
		Winter		Annual		Oats + Italian	Annual			
Crop 2	Barley	lettuce	Squash	ryegrass	Wheat	RG	ryegrass	Onion	Barley	Carrots
						February-				
Planting	April	April	October	Мау	March	March	April	June	June	Мау
Cultivation	MT	MT	IC (MT)	DD	IC (MT)	MT	DD	IC	DD	IC
							50 kg/ha	400 (200)		
	600 kg/ha DAP	400 kg/ha	200 kg/ha	50 kg/ha Urea			Urea (after	kg/ha		90 kg N/ha
Fertiliser	split application	Nitrophoska	Cropmaster	(after each	160 kg/ha	200 kg/ha	each	Nitrophoska	370 kg/ha CAN	on monthly
inputs	60:40	Blue	20	grazing)	CropZeal20N	CropZeal20N	grazing)	12:10:10	October	basis
								400 (200)		
		80 kg/ha	200 kg/ha			50 kg N/ha (urea	a, twice,	kg/ha		
	630 kg/ha CAN	urea side	urea side			during growth +	after grazing	Nitrophoska	370 kg/ha CAN	
	in Jan	dressing	dressing			(Sept))		12:10:10	November	
		150 kg/ha								
		Sulphate of								
		ammonia								
		side						80 (0) kg/ha		
		dressing						Urea		
			as required -							
			SWB (soil							
Irrigation			water		as required	as required				
system	None	None	balance)	None	(centre pivot)	(centre pivot)	None	as required	none	None
				September-			September-			
Harvest	January	September	February	October	October	October	October	January	February	October

Region:	Manawatu	Gisborne	Gisborne	Gisborne	Canterbury	Canterbury	Waikato	Waikato	Southland	Southland
								(January-		
							0.10.1/1	February)		
							8-10 t/na			
							grazed by			
		25 t/ha @	15 t/ha @			7 + 0.3 t	dairy cows			
Yield	8-10 t/ha	7% DM	35% DM	8-10 t/ha	6 t DM/ha	DM/ha	2-3 t/ha)	45 t/ha	6 t/ha	60 t/ha
										Annual
										ryegrass
Crop 3	Spring Opions				Kalo	Barlov		Carrots	Oats & NO	(possible as
					Kaic	Dancy		May		
								(February-		
Planting	January				October	October		May)	March	
Cultivation	discing				IC (MT)	IC (MT)		IC	DD	
	570 kg/ha					150 kg/ha		90 kg N/ha		
Fertiliser	Nitrophoska				240 kg/ha	CropMaster		(split		
inputs	Perfect			-	DAP	15 50 km N//ba		application)	-	_
	350 Kg/na Nitrophoska				200 kg N/ba	50 kg N/ha				
	Blue TF				(urea)	during growth)				
	as required				(urou)	duning growthy				
Irrigation	(travelling				as required	as required				
system	irrigator)				(centre pivot)	(centre pivot)		None	None	
								October		
Hamisat	Mari				luma lulu	lan		(October-	L.L.	
Harvest	IVIAY				June-July 21 t DM/ba	January		November)	July	
Crop 4	Green oats				Triticale	TO L DIVI/Ha		Squash	Potatoes	
					September -			Juash		
Planting	May				October			November	August	
Cultivation	MT			1	IC (MT)		1	MT (IC)	IC	
Fertiliser					160 kg/ha			170 kg/ha		
inputs	-				CropZeal20N			Nitrophoska	200 kg N/ha	

Region:	Manawatu	Gisborne	Gisborne	Gisborne	Canterbury	Canterbury	Waikato	Waikato	Southland	Southland
								(12:10:10) at		
								planting		
									100 kg N/ha side dressing	
									(twice, spaced out	6 weeks)
Irrigation					as required					
system	None				(centre pivot)			None	None	
Harvest	September				February			March	March	
	sprayed,									
Yield	ploughed in				14 t DM/ha			25 t/ha	45 t/ha	
Crop 5								Oats & rye		
Planting								April		
Cultivation								DD		
Fertiliser										
inputs										
Irrigation										
system										
Harvest								June		
Yield										
Crop 6								Barley		
Planting								July		
Cultivation								DD		
								370 kg/ha		
Fertiliser								CAN		
inputs								October		
								370 kg/ha		
								CAN		
								November		
Irrigation										
system								none		
Harvest								February		
Yield								7 t/ha		
Crop 7								Oats & rye		
Planting								March		

Region:	Manawatu	Gisborne	Gisborne	Gisborne	Canterbury	Canterbury	Waikato	Waikato	Southland	Southland
Cultivation								DD		
Fertiliser										
inputs								-		
Irrigation										
system								None		
Harvest								July		
Yield								ploughed in		
Variants: soil type	Recent	Recent	Recent		Brown, Pallic, Recent	Brown, Pallic, Recent	Brown, Allophanic	Brown, Allophanic, Granular	Brown, Pallic	Brown, Pallic
Variants: rainfall	950	1080	1080		500-800	500-800	900-1400	900-1400	800-1300	800-13000
Variants: systems										

6. Appendix VI – Abatement curves for S&B sites

Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the 19 sheep and beef system modelled in the 6 regions

Figures A6.1a and 1b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (1) system on Pallic soil with 800mm rainfall.

Figures A6.2a-2d: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (1) system on Pallic soil with 1200mm rainfall.

Figures A6.3a-3b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (1) system on Pallic soil with 1400mm rainfall.

Figures A6.4a-4b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (2) system on Brown soil with 800mm rainfall.

Figures A6.5a-5b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (2) system on Brown soil with 1200mm rainfall.

Figures A6.6a-6b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Manawatu sheep and beef (2) system on Brown soil with 1400mm rainfall.

Figures A6.7a-7b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (1) system on Recent soil with 800mm rainfall.

Figures A6.8a-8b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (1) system on Recent soil with 1200mm rainfall.

Figures A6.9a-9b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (1) system on Recent soil with 1400mm rainfall.

Figures A6.10a-10b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (2) system on Recent soil with 800mm rainfall.

Figures A6.11a-11b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (2) system on Recent soil with 1200mm rainfall.

Figures A6.12a-12b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Gisborne sheep and beef (2) system on Recent soil with 1400mm rainfall.

Figures A6.13a-13b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Bay of Plenty sheep and beef (1) system on Pumice soil with 1000mm rainfall.

Figures A6.14a-14b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Bay of Plenty sheep and beef (1) system on Gley soil with 900mm rainfall.

Figures A6.15a-15b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Wairarapa sheep and beef (2) system on Allophanic soil with 1400mm rainfall.

Figures A6.16a-16b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Canterbury sheep and beef (2) system on Recent soil with 800mm rainfall.

Figures A6.17a-17b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Southland sheep and beef (1) system on Pallic soil with 1300mm rainfall.

Figures A6.18a-18b: Cumulative percent changes in (a) emissions to air and water and farm productivity and (b) actual emissions of methane, nitrous oxide, carbon dioxide and totals with the stepwise introduction of mitigations and changes in enterprise, performance and practice to the Southland sheep and beef (2) system on Brown soil with 1000mm rainfall.

7. Appendix VII – Abatement curves for dDairy sites

Figure A7.1. Relationship between N and P loss reductions on GHG emissions. Southland dairy farm (System 2).

Figure A7.2. Relationship between N and P loss reductions on GHG emissions. Southland dairy farm (System 4).

Figure A7.3. Relationship between N and P loss reductions on GHG emissions. Canterbury dairy farm (Systems 2).

Figure A7.4. Relationship between N and P loss reductions on GHG emissions. Canterbury dairy farm (Systems 4).

Figure A7.6. Relationship between N and P loss reductions on GHG emissions. Waikato dairy farm (System 4).

Figure A7.7. Relationship between N and P loss reductions on GHG emissions. Bay of Plenty dairy farm (System 2).

Figure A7.8. Relationship between N and P loss reductions on GHG emissions. Bay of Plenty dairy farm (System 4).

Ministry for Primary Industries Climate mitigation co-benefits arising from the Freshwater Reforms • 75