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Abstract Reliable estimation of nutrient losses
from farmland is of increasing interest, driven by
both economic and environmental concerns. Routine
direct measurement of nutrient losses is currently
impractical given the scale and variability of the
problem. Simulation models are the best alternative
and their use for assessing potential nutrient losses
has been increasing worldwide. In New Zealand,
there are a considerable number of models in use,
or that are being developed, aiming to estimate N
and P losses from pastoral fields. This range of
alternative models reflects both the different level
of detail and scale at which N and P losses can
be estimated, and the diverse range of purposes
assumed during the model development. Thus, it
is important to understand the differences between
models in order to select the one that will produce
estimates appropriate to the intended use. This work
presents an overview of the principal models for
estimating nutrient loss being used or developed
in New Zealand. It emphasises models that deal
with N and P losses from pastoral farming systems,
particularly via leaching, and that may allow the
handling of different farm management procedures.
Most of the models have gone through some testing
and are supported by published works, although
some are not fully operational yet and others need
further evaluation. There is, in general, a lack of
organised information about how several of these
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models work and what their main purposes are.
We aim to supply some basic information about
the available tools, sorting them into categories to
highlight their primary differences and similarities.
This is intended to assist discussions about model
selection as well to highlight where information gaps
about particular models need to be addressed.

Keywords Environmental policy; model
uncertainty; model selection; OVERSEER®;NPLAS;
SPASMO; EcoMod; APSIM; LUCI

INTRODUCTION

Agriculture contributes to about 50% of New
Zealand's export earnings (Statistics New Zealand
2007), and the industry as a whole, particularly
dairying, has recently been growing faster than many
other economic sectors (Ministry of Agriculture and
Forestry 2007; Treasury 2007). The productivity of
dairy farms in New Zealand (kg milk solids ha"1),
for instance, increased by more than 15% during the
1990's, resulting from gains in both the production per
cow and the number of cows per hectare (Livestock
Improvement 2006). This gain in productivity has
been accompanied by increasing farm inputs. In the
same period, for example, the use of phosphorus
(P) fertiliser in New Zealand has doubled and the
use of nitrogen (N) fertiliser increased five-fold
(Ministry for the Environment 2006; Statistics New
Zealand 2006). This increase in fertiliser inputs, and
consequently in stocking rates, may lead to elevated
nutrient losses from farms.

The impact of agricultural intensification on
the environment is increasingly a matter of public
concern, and several regulations have recently been
passed, or are being considered, in order to limit
damaging effects on the environment (Parliamentary
Commissioner for the Environment 2004; Dragten
& Thorrold 2005; Horizons Regional Council 2007).
Aware of this, the industry has launched programs
such as the Sustainable Environmental Management
Strategy (Dairy Insight 2006) to better understand
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and reduce these impacts. Fonterra, the main dairy
company in New Zealand, and several regional
councils are promoting or requiring the use of nutrient
budgets to support farm nutrient management,
especially for more intensive uses such as dairy
farming (Ledgard et al. 2004; Monaghan et al. 2007).
Two approaches can be taken for calculating nutrient
budgets: measurement and modelling.

The impacts of agriculture in a catchment can be
measured, for example, by monitoring the quality of
the water bodies in the area, but the identification of
the impact level of particular farms or the different
land uses and management practices is much more
difficult. Routine direct measurement of nutrient
loss at a farm or paddock scale is currently not
feasible. While some measurement methods are
available, their spatial or temporal scales often do
not correspond with that required for monitoring.
The methods can also be time consuming, costly,
and generally the measures display large variability
(Addiscott 1995; Oenema et al. 2003). The
alternative to measurements is the use of computer
simulation models. Based on the knowledge of the
processes involved and with support of available
data, researchers can build models that can simulate
the farming systems. With these models, the possible
impact of different land uses and management
practices can then be predicted.

In light of the increasing practical importance
of nutrient simulation models, the objective of this
paper is to present an overview of the models that
might be useful for the routine estimation of N and
P losses to waterways from pastoral farms in New
Zealand. As water quality is of increasing concern
nowadays, we concentrate this review on the loss
pathways that affect water quality (leaching and
runoff) rather than on all loss pathways. We will
also focus on models that deal with pastoral farming
systems and emphasise the impacts of farm design
and management procedures on N and P losses, and
that have the potential to be used routinely across a
large number of farms. We also review a few more
specialised models that might have a supporting role
in the analysis of specific issues or could be used
in the future development of the models suitable
for routine usage. Our overview focuses on the
major models currently available and in use in New
Zealand, and presents a selection of models able to
handle problems on a wide range of scale, detail, and
uncertainty. With this overview we expect that the
parties interested in using modelling tools or their
results, whether for management, research, or policy
making, will have a guide for reference.

B A c K g r o u n d

Modelling is an important method for compre-
hensively integrating the knowledge of basic
processes and describing a system beyond that
which can be accomplished using subjective human
judgments (Bywater & Cacho 1994; Hutson 2003).
Estimation of production, irrigation, nutrient balance,
and leaching of chemicals are some of the subject
areas where models have most frequently been
applied in agricultural management.

Several different modelling approaches have been
used to evaluate nutrient losses from farm systems,
covering a broad range of scale and purposes, with
varying levels of detail and uncertainty (e.g., Di &
Cameron 2000; Close et al. 2003; van Beek et al.
2003; Elliott et al. 2005; Shorten & Pleasants 2007;
Vogeler et al. 2007; Johnson et al. 2008). While all
these models produce an estimate of the nutrient
balance of the system or area, their complexity
can vary greatly, according to the development
approach and assumptions, and the intended usage
(Addiscott 1995; Boote et al. 1996; Rykiel 1996;
Cichota & Snow 2008). The varying level of detail
in these models is mostly regarding the number
of pools and processes considered in the balance
(Fig. 1 and 2). The main difference between the
models is how each item in the nutrient balance is
estimated. The estimates can be produced in some
models using complex mechanistic, or process-
oriented, descriptions of a reasonably large number
of processes involved in the nutrient dynamics (Fig.
2). Conversely, there are models that use simpler,
typically empirical, descriptions of those processes,
and may take fewer items into account (Fig. 1).

Simple models are typically associated with large
spatio-temporal scales, for example annual averages
of nutrient losses on a paddock, farm, or catchment
(Fig. 1). The description of the system in such models
can be simplified because the variability of many
processes tends to decrease at large scales (Beven
1989; Addiscott 1996; Lin et al. 2005). To track
the variation of processes at small scales, however,
greater detail must be included in the model (Fig.
2) and so the model becomes more complex. The
more complex the model, the more information
about the system is usually required for obtaining its
parameters. However, these models can usually be set
up with greater specificity, and although specificity
does not directly imply accuracy, it certainly effects
the perception of the user and their subsequent
confidence in the model (Brown & Bewsell 2008).
It should be noted that although there is no hard
boundary separating simple and complex models,
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Fig. 1 Simplified schematic of a
nutrient balance over a large scale
area (farm system).
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Fig. 2 Schematic of the cycle
and processes involved in the nu-
trient balance in a pastoral field.

this terminology can be helpful for the discussions
in this work.

Complex models, describing natural and managed
systems with great detail, are common tools for
scientific research and consulting (Addiscott & Tuck
2001; Beven 2002; Keating et al. 2003). Although
there is large variation between these models,
their basic characteristics include the capacity to
work at various temporal and spatial scales (small
scales in particular), to handle a large variety of
processes, and may include simulations of complex
farm management. Simple nutrient budget models
have become common tools for the analysis and
management of farming systems on a basic level.
These models have also been used for general
evaluation of the sustainability of production and
environmental standards of farms, catchments,
and even countries (Goodlass et al. 2003; Kutra &
Aksomaitiene 2003; Schlecht & Hiernaux 2005;
Gourley et al. 2007). Although a nutrient budget

does not provide detailed information, it is an easy,
simple, and flexible tool for estimating the amount
of nutrient available or that is required to sustain a
productivity level (O'Connor et al. 1996; Scoones
& Toulmin 1998; Oenema et al. 2003).

The use of simulation models in New Zealand has
been accelerating in recent years, as their importance
for research and environmental analysis is recognised.
Measuring nutrient loss at an appropriate scale for
assessment is time consuming, costly, and subject
to large variability. Modelling can play a key role
to overcome these challenges.

There is an apparent overlap of what seems a
large number of models available or being developed
for this purpose (Dairy Environment Review Group
2006; Brown & Bewsell 2008). This is a result of the
different levels of detail and scales at which N and P
losses can be reported. Also, some scepticism seems
to arise from the lack of information about the basis
and validation of these models (Brown & Bewsell
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2007,2008). Because different models are appropriate
for different purposes, it is important to know what
they can and cannot do compared to the users' needs,
so that the most appropriate model is selected.

M o d e l s F o r FArM n u t r I e n t l o s s
e s t I M A t I o n u s e d I n n e w z e A l A n d

The most relevant models being used or developed
in New Zealand to compute nutrient balances
in agricultural fields are listed in Table 1. These
models can be used to obtain estimates of losses
at various scales, taking into account different land
uses and management practices. Given the range
of alternatives, it is important to know both the
strengths and the limitations of these models in order
to choose the best tool for a given task. Initially, two
groups of models for estimating nutrient losses at
paddock/farm level are identified. These are simpler
average type models and the more complex dynamic
systems models, which are discussed below. Some
models for larger scales or higher level of detail are
also shown in Table 1, but will be discussed later.

long-term average type models
(nutrient budgets)
These models focus on calculating the balance
of nutrients on a long-term annual average basis.

The scale of their predictions is paddock or farm,
and most of the processes have relatively simple and
empirical descriptions. Two models in this category
are discussed, both developed and in use in New
Zealand, and which demand only a moderate level
of expertise to use.

OVERSEER®

The OVERSEER® model (Ledgard et al. 1999;
Wheeler et al. 2003,2006) uses empirical relationships,
internal databases, and readily available data from
an "existing" farm to estimate the nutrient inputs
and outputs at farm or paddock scale, and presents
them as a nutrient budget. Here an "existing" farm
refers to the fact that OVERSEER® does not simulate
production but instead requires farm productivity
and farm inputs (fertiliser, supplements) as inputs to
the model. These quantities are usually known for
existing farms or can be estimated for hypothetical
farms using models such as Farmax (Marshall et al.
1991; Webby etal. 1995) or Udder (Larcombe 1999).
Using the nutrient budget and indices derived from
it, such as farm nutrient efficiency, the model can
be used to examine the impact of nutrient use and
flows within a farm. Both nutrient use efficiency and
environmental impact are assessed, and the effect
of implementing some mitigation options can be
investigated (Wheeler et al. 2003, 2006; Ledgard
et al. 2004).

table 1 Summary of several models available for estimating nutrient loss from pastoral farms. M, mechanistic;
P, process-oriented; E, empirical; Q, quasi-empirical; P/p, Point/paddock; P/f, Paddock/farm; F/c, Farm/catchment;
C, Catchment.

Model

daily or sub-daily time-step
APSIM
Crop calculators
DNDC
EcoMod
GLEAMS
HYDRUS
LEACHM
LUCI
RoTaN
SPASMO
Annual average estimates
AquiferSim
CLUES
EnSus
NLE
NPLAS
OVERSEER®
SPARROW

Main subject

Biophysical
Plant physiology
Biochemistry
Biophysical
Biogeochemistry
Biogeochemistry
Biogeochemistry
Biophysical
Nloss
Biogeochemistry

N in groundwater
N and P loss
N leaching
N leaching
N and P loss
N budget
N and P loss

Type

P
P
P
P
P
M
P
P
E
P

Q
Q
E
E
E
E
Q

Scale

P/f
P/p
P/p
P/f
P/p
P/p
P/p
P/f
C

P/p

c
F/c
F/c
F/c
P/f
P/f
C

Primary reference

Keating et al. (2003)
Li et al. (2007a)
Saggar et al. (2007b)
Johnson et al. (2008)
Leonard etal. (1987)
Simunek et al. (2005)
Hutson (2003)
Jamieson et al. (2006b)
Rutherford et al. (2006)
Green et al. (2004b)

Bidwell & Good (2007)
Woods et al. (2006)
Stephens et al. (2003)
Di et al. (2005)
EBoP (2007)
Wheeler etal. (2006b)
Schwarz et al. (2006)
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The model has been developed reviewing the
knowledge obtained primarily in New Zealand and
in consultation with end-users (farmers, consultants);
thus it is well suited for handling management
practices and environmental conditions particular
to New Zealand. OVERSEER® has been specifically
designed to require minimum input with data that
are meaningful to farmers and easily obtained
(AgResearch 2007). For reliable performance, the
OVERSEER® model requires that reasonable input
data are given (Wheeler 2009). This implies, for
example, that the amount of fertiliser required to
support the given level of production needs to be
known. It is also assumed that the system is in quasi-
equilibrium and that good management practices
are followed (Ledgard et al. 1999). The model is
designed to predict the long-term average behaviour
of the system and so it is not suitable for examination
of extreme-case scenarios or systems in transition.
Likewise, it is not suitable for estimating nutrient
losses from particular years.

OVERSEER® has three major sub-programs
or modules: pastoral, cropping, and horticultural.
Currently the model's strength lies in the pastoral
module, where more research and data for calibration
are available in New Zealand. Work to strengthen
the cropping and horticultural modules is currently
underway (Whiteman & Brown 2009). From the early
versions, where the nutrient budget comprised N and
P, the model has evolved to include several other
nutrients and pH. Also, an estimate for greenhouse
gas emission (CO2, N2O, and CH4) using inventory
methods is now given (Wheeler et al. 2003, 2006).

Initially OVERSEER® was primarily used to
assist fertiliser management, but it has evolved to
become a tool for evaluating farm systems, including
its impact on the environment (Wheeler et al. 2006).
OVERSEER® is widely used in New Zealand as a
decision support model by consultants. Training in
the usage of the model has been integrated into a study
programme on sustainable nutrient management at
Massey University (FLRC 2008). OVERSEER® has
also been used in a series of studies for evaluating
different systems and scenarios, for comparing
nutrient efficiency of New Zealand farms with
overseas counterparts (Ledgard et al. 2000; Thomas
et al. 2005), and to examine the effects of land use
change and management practices on nutrient loss
(Condron et al. 2000; Ledgard et al. 2001; Ledgard &
Power 2006). More recently the model has also been
used to monitor farm nutrient losses as an instrument
for applying new environmental policies (Dragten &
Thorrold 2005; Horizons Regional Council 2007).

NPLAS (Nitrogen and Phosphorus
Load Assessment System)

NPLAS has been developed by the National Institute
of Water and Atmospheric Research (NIWA) in
conjunction with Environment Bay of Plenty (EBoP)
and AgResearch. NPLAS is intended as a tool to
estimate N and P loss, either to streams or to the
ground water, from properties in the Rotorua Lakes
catchment. NPLAS uses empirical relationships
derived from the OVERSEER® and GLEAMS
(Knisel & Davis 2000) models calibrated to the
Rotorua catchment to describe the effect of farming
systems on nutrient loss (EBoP 2007). It calculates
long-term averages of nutrient loss based primarily
on land use, with minimal or generic information on
farm management. NPLAS (EBoP 2007) accounts
for various land uses, including pastoral farming,
cropping and horticulture, and also forestry, native
bush, recreational, and urban uses. The model allows
investigation of the impact of protection features, such
as fencing waterways and the presence of wetlands,
on nutrient loss. These features are set at different
qualitative levels of effectiveness, which were set
based on literature values and general knowledge
(EBoP 2007). A free version of NPLAS was released
in 2006, and can be operated via the internet running
from the EBoP web server. This model was released
for tests and further development was planned (D.
Ede, 2007 pers. comm.). However, upgrades made
on OVERSEER®, including most of the differential
features of NPLAS, such as the consideration of
wetlands, make it likely that NPLAS will be phased
out in favour of OVERSEER® (S. Elliot, 2008 pers.
comm.).

dynamic paddock and farm system models
In this category four model frameworks are reviewed.
These models work with complex systems on daily
or sub-daily time steps and are capable of simulating
quite different systems by using different sub-models
or modules that handle the specific processes. All
of these models are suitable for simulating some
aspects of New Zealand farm systems, however the
focus and strength of each model are quite different,
particularly when considering their potential to
model whole farm systems. The areas of overlap
between these models are only partial.

SPASMO (Soil-Plant-Atmosphere System Model)

SPASMO (Green et al. 2003a, 2004b) is a detailed
process-orientated model developed by HortResearch
(now Plant and Food Research) for simulating the
interactions in the plant-soil-water system. It has
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been developed using well established international
scientific knowledge, but has been adapted and tested
using research developed in New Zealand conditions.
Early versions of the model have been used since
the late 1990s, and it has been continually improved
with the implementation of more detailed routines
and the addition of procedures to handle the various
processes in the soil.

Water flow through the soil is simulated in
SPASMO using a water capacity approach (Hutson
& Wagenet 1993), and allows the specification of
a mobile and an immobile fraction (Addiscott &
Whitmore 1991). The model has a simple routine to
simulate plant growth, similar to that of Eckersten
& Jansson (1991), and plant water uptake that can
be adapted to one of several different crops ranging
from pasture to vegetables to kiwifruit vines. The
transport of nutrients is estimated after computing
the outputs of processes such as fertilisation, plant
uptake, volatilisation, exchange and transformation
in the soil. Most of the processes in the soil are
simulated assuming first-order relationships, and
can have weighting factors to account for abiotic
influences, such as temperature and soil moisture
(Green et al. 2003a).

SPASMO has been used mainly for horticulture,
where usually only single paddocks are considered. It
is possible to set up the model to simulate variability
within the farm (Green et al. 2007), however, the
model itself does not deliver outputs for the whole
farm. This integration has to be made indirectly, post-
simulation, by the user by combining the outputs
from several model runs (S. R. Green, 2007 pers.
comm.). A set of rules defined a priori are used to
control fertilisation, irrigation, and other management
practices for the simulated paddock. For pastoral
simulations, the model uses rules for grazing/stocking
following a pre-defined schedule, with supplement
being brought in if feed is insufficient. Nutrients
excreted by animals are the result of a balance between
the intake and the requirements for maintenance,
growth, and production. The remaining nutrients are
returned to the soil as urine and dung and are assumed
to be uniformly distributed over the paddock.

Being a process-oriented model, SPASMO can
be made quite specific to a particular area provided
the necessary soil and weather conditions are known.
This can provide some advantage over the simpler
nutrient budget models, but the cost of this specificity
is that the model needs more input data. However,
in this respect, SPASMO is still simpler than some
of the soil process models presented below (Sarmah
et al. 2006).

SPASMO is a flexible model framework; the
addition of different modules enables it to be adapted
for specific systems, but it does not have a well
developed end-user interface. It is, thus, an expert-
user model and is not directly available beyond
HortResearch. The SPASMO model has been widely
used in research, such as in the evaluation of N
leaching from pastoral and horticultural land (Green
et al. 2000, 2003a; Rosen et al. 2005), estimation
of water use by plants (Green et al. 2003b, 2004a;
Vogeler et al. 2004), and assessment of pesticide
transport in soils (Close et al. 2003, 2006; Sarmah
et al. 2005). The GROWSAFETM calculator
(Snow et al. 2004), a tool developed to evaluate
risk of pesticide leaching and residual build-up in
agricultural soils, has been created using estimates
of pesticide dynamics simulated by SPASMO using
an extensive combination of crops, regional climates
and soil types across New Zealand.

EcoMod

EcoMod is a biophysical model designed to simulate
pastoral systems of New Zealand and Australia
(Johnson et al. 2008). The farm is subdivided into a
user-defined number of paddocks where attributes
such as soil properties, pasture species, irrigation
and fertiliser management can be defined. The
model integrates these paddocks into a farm by
controlling the grazing of a mob of animals around
the paddocks, with supplements made or fed out
depending on pasture supply and the animal feed
demand. EcoMod is able to simulate dairy, beef,
sheep, and deer systems. Water and nutrient processes
are simulated in detail within each paddock. Water
balance, including runoff and leaching, and nutrient
(N, P, K, and S) and organic matter dynamics are
simulated by specific modules. Farm performance and
nutrient losses are estimated, including greenhouse
gas emissions (Johnson et al. 2004). EcoMod, and
its partner DairyMod, have evolved from the SGS
(Sustainable Grazing Systems) model (Johnson et al.
2003) and so has its strengths in pastoral systems.

EcoMod accounts for several processes with a
relatively high level of detail, thus a large amount
of input data is required to set up a farm simulation,
similarly to SPASMO. The user interface of Ecomod,
however, is comprehensively developed. Nonetheless,
EcoMod should be considered a research model rather
than a decision support tool. EcoMod can be set
up to investigate the implications for urine nutrient
return into patches rather than the uniform distribution
that is commonly assumed in most process-oriented
models (Snow et al. 2009a,b). To date, model usage
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has included testing against measured dryland and
irrigated pasture growth rates in the South Island
(White et al. 2008) and testing of pasture growth
against several Australian and New Zealand datasets
(Cullen et al. 2008). EcoMod was also used to explore
the potential for several leaching mitigation options
for the Lake Taupo catchment (Bryant et al. 2007,
2008). The model is being adapted to fit into the
APSIM modelling framework, described below (R.
J. Eckard, 2008 pers. comm.).

LUCI, the Crop Calculators, andFarmSim

LUCI (Land Use Change and Intensification) is a
model framework for simulating, at a paddock scale,
changes in drainage, and N leaching from different
land uses and management systems (Jamieson et
al. 2006b; Zyskowski et al. 2007). This model, still
under development, can predict plant growth and
nutrient leaching. It is based on the crop calculators
developed by Crop and Food Research (now Plant
and Food Research). The Crop Calculators (Li et
al. 2007a), already being used in New Zealand and
the United States, have an easy-to-use interface that
allows land managers to investigate tactical irrigation
and fertiliser management in their paddocks. These
calculators focus on a single cropping season.

The LUCI model dynamically simulates plant
growth, mineralisation and C and N processes in the
soil and the key components of the water balance.
LUCI is designed to track these processes over
several years. The Sirius Wheat Model (Jamieson
et al. 1998; Jamieson & Semenov 2000) was the
starting point for the development of LUCI but the
model can now simulate several other crops, such
as potato, maize, peas, and forage brassica (Wilson
et al. 2004, 2006; Zyskowski et al. 2004; Jamieson
et al. 2006a; Li et al. 2006). A module for ryegrass/
clover pasture is under development (Snow et al.
2007c) and methods for implementing variability
associated with urine patches are being investigated
(Snow et al. 2007b).

A collection of LUCI paddocks can simulate a
farm. This integration is done by FarmSim (Lilburne
et al. 2006), and includes a description of farm
management. FarmSim is intended to account for the
effect of integrating different land uses and supplying
information to a groundwater simulation model,
AquiferSim (Bidwell & Good 2007). AquiferSim
then integrates the outputs of the various farms to
estimate the effect of farm management on ground
or surface water. With this integration the model is
useful for crop and pasture management at small
scales as well as for environmental monitoring and

policy analyses at larger scales (Jamieson et al.
2006b; Lilburne et al. 2006). LUCI and FarmSim
form part of the suite of tools being developed
within the Integrated Research for Aquifer Protection
research programme (IRAP 2008).

APSIM (Agricultural Production
systems SIMulator)

This model framework has been developed by the
Agricultural Production Systems Research Unit in
Australia and is designed to simulate biophysical
processes of farming systems (Keating et al. 2003;
APSRU 2008). APSIM is a flexible platform for
studying the impacts on agricultural production,
economics, and environmental outcomes caused by
changes in the climate and/or in the management
system.

The framework of APSIM comprises several
biophysical modules to simulate specific processes,
a series of management modules to account for the
variation in the farm management, an input/output
module to interface with the user, and an engine that
links and controls these modules (Keating et al. 2003).
In the APSIM framework, the user can choose the
modules to be used, and when based on the Common
Modelling Protocol (Moore et al. 2007) different
modules can be easily added as they are developed.
These new modules can be developed independently by
researchers interested in using APSIM's management
scripting module or any other module. This framework
gives considerable flexibility to set up simulations
and allows the re-utilisation of modules for different
jobs, avoiding overlaps and saving development time
(Holzworth et al. 2009). APSIM modules developed
so far are mostly based on cropping systems (APSRU
2008) but there are modules able to handle pastoral
and natural vegetation systems being developed (Huth
et al. 2001; Whitbread & Clem 2006). The amount
of input data required to set up APSIM simulations
depends on the way the individual selected modules
were built, but a relatively large number of parameters
is generally necessary. Consequently, until now this
model has mostly been used for research and consulting.
Recently a simplified interface (Yield Prophet®) has
been released in Australia for use by farmers (Hunt
et al. 2006). APSIM's application in New Zealand
is still limited, but increasing. Publications include
simulations of drainage and runoff in tile-drained
soils (Snow et al. 2007a) and some studies on climate
change impact on plant growth (Asseng et al. 2004).
In addition, the APSIM framework is being used to
add management flexibility to the EcoMod model (S.
Rains, 2008 pers. comm.).
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M o d e l s F o r n u t r I e n t l o s s
e s t I M A t I o n A t d I F F e r I n g s c A l e s

catchment models
The scale of a catchment is typically larger than
that of a farm, and generally several farms are
enclosed within the catchment area. Environmental
assessments and policies are often defined, however,
at catchment scale as they are natural partitions
of the environment with respect to water flow.
Therefore, catchment models are of interest mainly
to regional councils and national governmental
authorities. There is considerable variation in the
scope of catchment models. Typically these models
deal with a simplified level of detail regarding the
different land uses, however, they should include
all the significant land use types present in the area
and should deal with point sources of nutrient loss
(Alexander et al. 2002b; Schlecht & Hiernaux 2005).
These models also may handle groundwater flow
and attenuation of nutrients in the groundwater and
streams. Because the effect of the different land
uses may depend on their relative position in the
catchment (e.g., Refsgaard et al. 1999; Alexander et
al. 2002a; Bidwell et al. 2005; Schlecht & Hiernaux
2005), these models are often built coupled with
a mapping tool, such as geographic information
system (GIS). The temporal scale of catchment
models varies depending on the processes being
considered and its purpose.

Some of the models presented in this category
can also produce nutrient balances at smaller scales,
but this has not been their primary use. All models
have been developed or calibrated in New Zealand
to simulate catchments at varying scales.

EnSus (Environmental Sustainability)

EnSus is a framework model for assessing and
mapping the relative risk that different land uses
represent to soil and water quality (Stephens
et al. 2003). This model combines maps of soil
vulnerability with land use pressure to produce risk
and management maps. Economic and social values
are also included (Hewitt & Stephens 2002). All of
the information stored in a database is linked to a
GIS to produce the maps (Stephens et al. 2002).
The model has been prepared for use at catchment,
regional or national scales, although it is possible
to use it at smaller scales provided the appropriate
maps are supplied. The vulnerability of a soil type
for N loss is estimated by the difference between the
potential leaching from the soil and the attenuation
factors applied during transport to the groundwater

or water body (Woods et al. 2006). Potential leaching
is obtained by combining a soil permeability factor
and a climate factor (rainfall to evaporation ratio,
plus an index of available water), while attenuation
factors represent the occurrence of denitrification in
wetlands and anaerobic soils. In EnSus, it is possible
to incorporate expert knowledge within the database
information to make predictions of the risk for some
defined hazards.

The EnSus framework is appropriate for analysis
of risk where good mechanistic models are lacking,
and/or the data is patchy. Its use is still limited, but
applications are set to increase as it will be incorporated
into the CLUES package as described below.

NLE (Nitrogen Leaching Estimation)

NLE is a semi-empirical model designed to produce
estimates of the annual averages of N leaching
from different land uses into the ground water.
In its first version, the model used an empirical
relationship between the potentially leachable N and
the concentration of N in the drainage water (Di &
Cameron 2000). The potentially leachable N was
determined by balancing the annual fluxes of the
major N cycling processes. Empirical or functional
relations for each of the annual N fluxes were
determined in experiments, either using lysimeters
or in the laboratory. The relationship between
the amount of N that is potentially leachable and
the amount that actually leaches was empirically
determined and tested against published data (Di &
Cameron 2000). The differences between land uses
and management are accounted for in the nutrient
balance. A newer version of NLE estimates the
amount of N leached into the ground water in a given
catchment area by computing the relative effect of
the different land uses (Di et al. 2005). A different,
but constant in time, N concentration in the drainage
water is assumed for each land use. The amount of
water leached is estimated by a water balance.

This model has been developed at Lincoln
University and tested against data from Canterbury.
The model would need calibration for application
in other regions. NLE could be used at farm or
catchment levels but its use is not widespread (H.
J. Di, 2007 pers. comm.).

SPARROW(SPAtial Referenced Regression
On Watershed attributes)

The SPARROW model is a semi-empirical model
developed in the United States for estimating
nutrient yield in catchments and the load at its
discharge point (Alexander et al. 2002b; Schwarz
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et al. 2006). The model uses a mechanistic structure
to correlate nutrient flux in streams and spatial data
on nutrient sources, landscape characteristics, and
stream properties. Landscape is characterised by
soil permeability, drainage, and temperature. The
nutrient sources (land uses or point sources) are
defined by specific coefficients (Alexander et al.
2002a). The relationships within the model must be
calibrated to the catchment in study.

SPARROWhas been adapted by NIWAto estimate
N and P loads from most catchments throughout
New Zealand (Elliott et al. 2005). However it has
not been validated for very small catchments. As this
is a large scale model, SPARROW is primarily used
to assess the status and performance of catchments
(Alexander et al. 2002a). It is also being incorporated
into the CLUES framework.

ROTAN (ROtorua and TAupo Nitrogen)

The ROTAN model was developed to estimate
nitrate leaching to groundwater and then to streams
and further to the lakes of the central North Island
of New Zealand (Rutherford 2005; Rutherford et
al. 2006). This proprietary model was proposed
after increasing concern about the quality of the
water bodies of this region. The model simulates
the balance of the main water inputs (rainfall), the
transfer processes (infiltration, percolation), and
outputs (evaporation, streamflow). Streamflow is
calculated from the outflow from three conceptual
reservoirs (Rutherford 2005), representing quick
shallow sub-surface flow (time scale 1-2 days),
slow subsurface flow (2-10 days), and groundwater
(weeks to years). Two different approaches are being
tested to estimate nitrate loads into groundwater and
streams, but the nitrate loss from the soil for different
land uses need to be given and OVERSEER® and
NPLAS are initially being used for this purpose
(Rutherford et al. 2006). The model is being validated
with the collection of new data (K. Rutherford, 2007
pers. comm.).

CLUES (Catchment Land Use
and Environmental Sustainability)

CLUES is a model framework which combines
OVERSEER®, SPARROW, SPASMO, EnSus,
and HC model (an economic model from Harris
Consulting) to predict environmental and economic
implications of land use or management changes
(Woods et al. 2004, 2006; Semadeni-Davies et al.
2006). The CLUES-GIS framework can be iteratively
handled by users to specify land uses and to produce
maps of nutrient yields, leaching, and economic costs.

Currently CLUES is able to predict annual averages
of N and P yields and losses at sub-catchment scale
(Semadeni-Davies et al. 2006). Several land uses can
be selected, and different scenarios can be compared.
Not all of the components are presently integrated
within the CLUES framework; the model is still
in development and will require further validation
(Woods et al. 2006).

AquiferSim

AquiferSim the key modelling tool for aiding
environmental policy analysis that has emerged
from the IRAP research programme (Lilburne et
al. 2006; IRAP 2008). AquiferSim is a regional-
scale groundwater model designed to evaluate the
effect of N leaching on the quality of the underlying
groundwater (Bidwell & Good 2007). The input
information required includes climate data, land
use, and aquifer properties, and is given in the form
of GIS layers, at a 1 ha spatial resolution (Bidwell
et al. 2005; Bidwell & Good 2007). The surface
inputs are used to reference a lookup table of annual
average drainage and N leached from the root zone
of the appropriate land use. These values have been
obtained from experimentation or an appropriate
simulation model.

To evaluate, in few minutes of simulation, the
effects of future land-use scenarios at a scale of
several thousand square kilometres AquiferSim
uses various scaling strategies. These range from
the development of a dedicated steady-state model
(Lilburne et al. 2008), to a series of specific
simulation exercises that identified key processes
and factors, and appropriate simplifications
(e.g., Snow et al. 2007b). AquiferSim is still on
development, and is to be installed at Environment
Canterbury. Council staff will be able to run
simulation in order to determine the likely effect
of proposed land-use rules on nitrate leaching and
drainage and then on groundwater quality.

soil process models
The models under this category are all process-
oriented, although the degree of complexity varies
amongst them. These models were developed
primarily for analysing soil processes. Detailed plant
and animal processes are mostly beyond the scope of
these models and the effect of different management
on the nutrient balance is generally assessed
indirectly. These models have been developed in
the United States but are recognised worldwide and
have been applied in New Zealand.
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GLEAMS (Groundwater Loading Effects
of Agricultural Management Systems)

GLEAMS was introduced in the late 1980s, having
been developed as an extension of the CREAMS
(Chemicals, Runoff and Erosion from Agricultural
Management Systems) model (Leonard et al. 1987).
GLEAMS simulates the loadings of water, sediment,
pesticides, and nutrients at the bottom of the root-
zone from a homogeneous field, based on complex
climate-soil-management interactions (Knisel &
Davis 2000). It was developed to evaluate the impact
that differing management systems, such as cropping
rotations, irrigation, and tillage operations, have
on the potential for chemical leaching. GLEAMS
uses a tipping-bucket approach to simulate water
movement in the soil, and its solute movement
also uses simpler approaches than the other models
described below.

The GLEAMS model has been used in many
studies on water and solute movement worldwide
and it is part of the USDA-NRCS repertoire of
operational models. In New Zealand, GLEAMS has
been used to simulate N mineralisation and leaching
in Canterbury soils (Webb et al. 2001; Lilburne &
Webb 2002; Lilburne et al. 2003), and to evaluate
the movement of pesticides in several soils (Close
et al. 1999, 2003; Sarmah et al. 2005, 2006; Dann
et al. 2006). GLEAMS has been employed in the
development of NPLAS (EBoP 2007).

LEACHM (Leaching Estimation
And CHemistry Model)

LEACHM comprises several modules of a process-
based simulation model designed to describe the
soil water regime and chemistry and the transport
of solutes in unsaturated or partially saturated soils
(Hutson 2003). It is primarily a research model, used
for simulating water and chemical transport down
into the soil profile (one dimension, up to 2 m).
There are several versions of the model, each sharing
common descriptions of the water balance and solute
movement but with different "chemistry" modules.
The LEACHN version simulates N dynamics.
LEACHM simulates plant growth at a very simple
level only to obtain estimates of water and solute
uptake. Simulations of plant growth with varying
system management has been done coupled with
other models (Mohtar et al. 1997). GIS integration
has also been developed by third party researchers
(Macur et al. 2000). LEACHM has been used in a
wide variety of studies worldwide. In New Zealand,
it has been recently used for estimating nitrate
leaching at an effluent treatment site (Mahmood et

al. 2002) and in a series of nationwide studies on
pesticide leaching (Close et al. 1999,2003; Sarmah
et al. 2005,2006; Dann et al. 2006).

HYDRUS

HYDRUS is a software package developed to
simulate the movement of water, heat, and multiple
solutes in variably saturated media (Simunek et
al. 2005). The flow media can be composed of
non-uniform soils, with dual porosity formulation
possible in later versions. Two different distributions
are available, HYDRUS-1D for one-dimensional
simulations, which is a stand-alone freeware package
(HYDRUS 2008), and HYDRUS (formerly known
as HYDRUS-2D), which allows simulations in two
or three dimensions. The model uses numerical
techniques to solve mechanistic water and solute
transport equations. The flow can occur in the vertical,
horizontal, or any given inclined direction. The soil
layering can be arbitrary and the monitoring depth(s)
can be specified. HYDRUS does not simulate plant
growth or system management; only a sink term
to account for plant water uptake is available. Two
interesting features of HYDRUS are its ability to
model solute transport with dual-domain porosity
and capacity for simulations in 2 and 3-D. These
features maybe useful for assisting the development
of simpler models that do not explicitly acknowledge
the presence of non-equilibrium flow processes.

The HYDRUS model is widely recognised and
has been used in numerous studies, chiefly in the
United States and Europe. It has been used in New
Zealand to simulate the water regime in lysimeters
(Mertens et al. 2005), the nitrate and bacteria
movement towards groundwater (Pang et al. 2006),
and in several studies on pesticide leaching (Close
et al. 1999, 2003; Pang et al. 2000; Sarmah et al.
2005, 2006; Dann et al. 2006).

other models
There are a considerable number of models available
that have not been considered in this review in
order to keep it within the proposed scope. Some
are briefly mentioned here to highlight the range
of applications for simulating nutrient losses from
farmland. The main focus of this review is the
description of nutrient losses via leaching, which
is a major cause of economic and environmental
concern. Lately, however, there has been increasing
efforts to improve the description of gaseous losses
from farming systems, especially N2O. These losses
are in general of low significance for computing
the N balance, but they can be highly important for
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issues such as climate change. Some of the models
already presented, such as EcoMod and APSIM,
also produce estimates of gaseous losses, but there
are others built especially for this purpose. The most
developed model for simulating gaseous losses in
New Zealand is probably the DNDC (DeNitrification-
DeComposition) model (Li et al. 1992; Saggar et al.
2004,2007b). This is a process-based model which
can describe simultaneously emissions of trace-
gases, soil carbon sequestration, and plant yield.
Developed in the United States, the model has been
adapted to the New Zealand conditions and has
already been used in some studies (Giltrap et al.
2007; Saggar et al. 2007a). Other tools available for
modelling gaseous losses include DayCent (Stehfest
& Müller 2004), WNMM (Li et al. 2007b), and
the use of Automated Neural Networks (Ryan et
al. 2004).

There are also several researchers in New Zealand
who have developed their own modelling tools,
generally for some quite specific job or research
project. Some of the approaches taken may be
similar to the models discussed above. Other models,
however, have been built because of the lack of
flexibility or some specific capability in the various
existing tools. Some of these models may be of
interest in the near feature, especially with regard
to risk analysis. These include models built with a
probabilistic approach that may include mechanistic
description of solute interactions in the soil and
also spatial variability due to non-uniform return
of nutrient via animal excreta (e.g., White et al.
1998; Shorten & Pleasants 2007; Vogeler et al. 2007;
Zhang & Tillman 2007; Wang 2008).

d I s c u s s I o n

There is a wide variety of models able to simulate
nutrient balances in New Zealand pastoral farms
at various scales (Fig. 3). This variety may seem
confusing, but it reflects differing background of
modellers and the different purposes for the models.
Models can be used for a wide range of applications,
from research purposes, to environmental or policy
assessment, farm management, land-use risk
assessment, and project design and evaluation.
Thus, knowing their strengths and limitations
is important to select the appropriate tool and
ensure correct usage. It is important to note that
models are simplified descriptions of the natural
systems and all models have shortcomings. Model
performance is often limited because of incomplete

knowledge of the system or processes and due to
assumptions, explicit and implicit, made by the
modeller (Beven 2002; Hojberg & Refsgaard 2005;
Council for Regulatory Environmental Modeling
2008). Therefore, uncertainties always exist in all
modelling efforts.

While the issue of how to deal with model
uncertainty is under active development, it is often
neglected by developers and users (Pappenberger
& Beven 2006; Refsgaard et al. 2006; Brown &
Heuvelink 2007; Lowell 2007). The system being
described can be itself highly variable. Also,
measurement procedures to obtain the data used
in the model development and validation are an
inevitable source of uncertainty. For example, it is
common to compare simulated N leaching against
measurements, but all measurements of leaching
at any relevant scale are exceedingly variable
whenever the experimental methodology has
included replication (Addiscott 1996; Refsgaard
et al. 1999; Pakrou & Dillon 2004). Therefore,
large uncertainties associated with the output are
unavoidable when modelling such process.

The variability of many environmental processes
is related to the spatio-temporal scale at which they
are described. For example, long-term averages of
large areas tend to present considerably less variation
than a single point on a daily basis. The intuitive step
of increasing the level of detail of a model seeking for
a reduction of the prediction uncertainties may not
yield the expected result. Increasing the model detail
can also make gathering the appropriate parameters
more difficult, and may as a result introduce more
uncertainty into the model estimates. The use of
unreliable parameters and input data is regarded
as the major source of uncertainty in modelling
(Addiscott & Tuck 2001; de Vries et al. 2003; Schoups
& Hopmans 2006). Well calibrated process-oriented
models are expected to present small uncertainties at
small scales. However, the high specificity of these
models and the large variability of the processes
modelled tend to amplify the uncertainties when
increasing the scale (Addiscott 1995; Schlecht
& Hiernaux 2005; Sarmah et al. 2006). Farm or
catchment budgeting models average out most of the
variability by targeting the predictions to large areas
and time spans and so allowing simpler descriptions
of many processes (Kersebaum & Wenkel 1998;
Schlecht & Hiernaux 2005).

Models, thus, should not be regarded as correct
or incorrect because of the uncertainty level. It is
more appropriate to infer applicable models for a
given set of requisites. That means selecting a model
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designed to handle the relevant processes and the
possible variations on the management practices
at the scale of interest (Rykiel 1996; Scoones &
Toulmin 1998; Schlecht & Hiernaux 2005; Cichota
& Snow 2008). A compromise might have to be
made when choosing or developing a model in order
to consider the majority of processes occurring in
the system with limited input data. This may imply
accepting a higher level of uncertainty.

Nutrient budget models are appealing because of
their requirement of a relatively modest amount of
input data (Watson & Atkinson 1999; Öborn et al.
2003). However, specific conditions or situations
of interest which deviate from the norm or the
average might be missed. Models with higher level
of detail, such as process-oriented and mechanistic
models, may be better suited for such tasks
because they can often be set to describe systems
with greater specificity. This seems to generally
increase the confidence in the model simulations,
even though specificity does not necessarily mean
greater accuracy. The amount of data required to
set up simulations using process-oriented models

is a significant limitation of their usage. Also, some
degree of expertise is recommended for interpreting
the results from these models (Pappenberger &
Beven 2006; Lowell 2007).

Models are often better at describing relative
differences, such as the increase or reduction of N
leaching after a management change, rather than
providing the absolute values of leaching. It is
important to take this into account when analysing
model outputs. Dynamic paddock models and
process-oriented soil models can also be useful
to derive simpler functions for improving or
calibrating the coarser-scale catchment or farm
budgeting models. This is an approach which is
gaining popularity (Young et al. 1996; Khaither &
Erechtchoukova 2007). For instance, upgrades for
the crop and horticultural modules of OVERSEER®
are being supported by simulations made using
process-oriented models, including SPASMO and
LUCI (Whiteman & Brown 2009).

In New Zealand, nutrient budgets have
been successfully used for supporting fertiliser
management for quite a long time and recently have



Cichota & Snow—Estimating nutrient loss from pastoral farms 251

been used as monitoring tools for environmental
policy (Ledgard et al. 2004; Dragten & Thorrold
2005; Wheeler et al. 2006; Monaghan et al. 2007).
The ability of such models to evaluate management
options is quite limited, but increase as models such
as OVERSEER® are updated (Wheeler et al. 2006;
Wheeler 2009). Process oriented models are also
gaining popularity and their use is likely to increase.
They have been applied in several research studies
and more recently have been used to identify causes
for nutrient loss and mitigation strategies at paddock
level (Mahmood et al. 2002; Lilburne et al. 2003;
Rosen et al. 2005; Bryant et al. 2007; Green et al.
2007). Likewise, sources and pathways for nutrient
discharge into large water bodies and the groundwater
have been assessed using modelling (Alexander et al.
2002b; Elliott et al. 2005; Rutherford 2005; Bidwell
& Good 2007). Models, therefore, have shown their
usefulness and certainly have a key role to play in
the assessment and monitoring of nutrient losses.
Their use, when made with discernment, will surely
be very constructive for improving farming and
environmental standards in New Zealand.

long-term average type models
OVERSEER® is the only user-friendly model already
available and in use in New Zealand with sufficient
trained consulting staff prepared to deliver farm-
level nutrient budgeting. The model is an appropriate
tool for the estimation of N and P balances at farm/
paddock level. It uses easily accessible input data and
accounts for most of the various farm management
practices typical in New Zealand. The OVERSEER®
model has shown its usefulness as a decision support
tool for fertiliser management, although a more
comprehensive and publicly available documentation
and some more validation tests could be beneficial.
The scientific credibility of OVERSEER® would
be enhanced if more information about the model
was available (Brown & Bewsell 2008) and such
documentation is currently in preparation (D. M.
Wheeler, 2008 pers. comm.). Documentation for the
other long-term average type model, NPLAS, is also
not widely available, because NPLAS is only in a
development and testing phase.

The proposal to use OVERSEER® as a tool
to support policy decisions and environmental
monitoring seems feasible, as such an approach
has already been implemented in other countries
(Goodlass et al. 2003; Oenema et al. 2003). However
the limitations of a budget model for such a task
should be acknowledged. Nutrient budgets are
very useful for providing a snapshot of the current

situation and to start informed debate on actions and
policies for tackling environmental issues (Scoones
& Toulmin 1998; Goodlass et al. 2003; Gourley
et al. 2007). These budgets have lesser ability to
distinguish the effects of natural variability and its
interactions with management practices, especially
at non-steady state and/or non-uniform conditions.
Because of this, predictions of future trends resulting
from land-use change or climate variation should be
made with care (Öborn et al. 2003; Oenema et al.
2003).

dynamic paddock and farm system models
Of the models in this category, SPASMO has been
tested the most under New Zealand conditions and
has been used in the widest variety of situations
and locations nationwide. It lacks, however, a good
user interface and the documentation about it is also
scattered. APSIM has had fewer applications in New
Zealand, but has been extensively used in Australia
and overseas. The documentation is freely available
and it has a comprehensive user interface. The other
models in this category are still being developed and/
or need more validation tests. It should be noted that
EcoMod has the most user friendly interface and also
is very well documented.

There are clear differences between these models
with respect to their background and flexibility.
SPASMO has been used mostly for horticulture,
EcoMod for pastoral systems, and LUCI and
APSIM have primarily been used for cropping
systems. This may be relevant when choosing one
model, although the basic processes are described
similarly in all of them. Most important perhaps is
the flexibility for setting up simulations. SPASMO
has been used for quite a variety of systems, but it
cannot dynamically simulate a whole farm, which
is important for pastoral systems. User expertise
is required to integrate several individual paddock
simulations into a farm-average value. SPASMO
also assumes a uniform return of animal excreta
to the paddock, ignoring a process that is known
to be very important in the leaching process from
grazed paddocks (Ball & Ryden 1984; Haynes &
Williams 1993; Di et al. 2002; Pleasants et al. 2007).
APSIM, being a modular framework, is the tool that
offers the most flexibility; there are a great number
of modules already available that can be selected
and integrated by a powerful management engine
(Keating et al. 2003; Holzworth et al. in press). Also,
with the implementation of the Common Modelling
Protocol (Moore et al. 2007), the development of new
modules is open to a broader number of researchers,
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and their implementation is relatively easy. For
instance, the ability of APSIM to simulate pastoral
systems has been strengthened by the inclusion of the
FarmWi$e (Moore 2001) and EcoMod modules into
its modelling framework. A promising future model
is the combination of the well-tested and validated
soil and nutrient modules in APSIM connected to the
equally well-tested pasture modules in EcoMod.

catchment models
Most of the models presented in this category are of
interest for research and management at catchment
scale. Users of these models or their results include
regional councils and environmental agencies.
Although these models are not limited to catchment
scales, they have their strength or have been mostly
used at such scale.

For land planning and as a policy-making support
tool, the CLUES framework and AquiferSim have
very attractive features. CLUES is still relatively
simple and is able to integrate land use, management
practices, and system transfers within a catchment
area and beyond. It also provides a summary of
results in the form of maps. AquiferSim also is on
a similar stand, but while CLUES concentrates
on surface water processes, AquiferSim's strength
is in simulating groundwater transport. There is
clear complementarity between these models, and
discussions for cooperation are in progress (L.
Lilburne, 2009 pers. comm.). However, both CLUES
andAquiferSim are ongoing projects and need further
development and testing. Other models from this
category, notably SPARROW and EnSus, also work
at this level and may be useful for environmental
management and policy-making support. ROTAN is
under development and, along with NLE, needs to
be calibrated to regions other than those they were
developed for. Most of these models, however, are
not detailed enough to respond to fine variations in
the landscape or to changes in farm management.

soil process models
These models, due to their higher level of complexity,
seem to remain applicable mainly for scientific and
consulting purposes. Soil process models are very
useful to investigate particular processes in the soil
in detail and have a significant role in developing
and testing simpler models. They can be used for
evaluating non-equilibrium systems and also extreme
case scenarios. They lack, however, flexibility to
account for the integration of varying management
practices. In the context of this review, these models
can be useful for testing some of the assumptions

of coarser-scale models or for developing generic
functions for use elsewhere. Specific complex
situations that demand a high level of description
of the soil profile, such as sharp impeding layers,
or the interactions between soil-water flow and
plant roots, are also issues to be tackled with these
complex models.

c o n c l u s I o n s

The application of models for nutrient management
is already a reality in New Zealand. Whether the
estimation of nutrient loss is focused on preventing
environmental impact or ensuring high levels of
farm productivity, models have already shown their
usefulness. A new development gaining momentum
is the use of models to establish N management
targets, such as fertiliser caps, and to demonstrate
compliance with legislation. This increasing use
makes it more important to recognise the differences
between models. Although overlaps do happen, in
general most of the models presented in this review
are best applicable to a limited set of problems and
at differing scales. Knowing their strengths and
deficiencies will help to select models properly and
understand better their results.

There is much misunderstanding and lack of
information about the potential of existing tools and
that may be limiting their use and acceptance. We
recommend that model developers disclose more
information about the assumptions, purpose and
known uncertainties of their models. It is important
to maintain the development and testing of these
models, as well as the studies on the actual processes
involved on nutrient loss, so that the descriptions
can be better understood and improved. How we
communicate and deal with uncertainty, whether
arising from measurements or from modelling,
is a challenge that deserves a close look in the
near future. With a discerning approach and more
reliable outputs we will be able to reach wiser
decisions.
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