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Introduction 

Increasingly legislation and regulation require New Zealand farmers and land managers to 

reduce nutrient losses from their land to water. A number of models and methods are 

routinely used to assist with the task of identifying stocks and fluxes of nutrients in 

watersheds, but few offer quantification and solutions at fine spatial scale, yet are easily 

applied. 

 

The Land Utilisation & Capability Indicator (LUCI) is an option in this regard. A bespoke 

version of LUCI is currently under development for the Ravensdown co-operative that will 

assist New Zealand farmers and other land managers with decision-making concerning farm 

ecosystems. LUCI is particularly well-suited to assessing how on-farm activities affect water 

quality. One aim of the collaboration is to develop algorithms that consider influential 

nutrient loss variables (e.g. rainfall, soil type, fertiliser use and topography) and calculate 

export coefficients at fine scale for use in LUCI water quality models. 

 

This paper discusses the need for a multivariate, algorithmic approach to export coefficient 

calculation and demonstrates its use in the Tuapaka catchment east of Palmerston North, a 

largely agricultural area. Here we present results of 4 applications of LUCI water quality 

models to the Tuapaka catchment, each using increasingly detailed input data. These are 

compared to OVERSEER
®
 predictions and in-stream nitrogen (N) and phosphorus (P) 

measurements. 

LUCI  

LUCI, an extension of the Polyscape framework described in Jackson et al. (2013a), is a GIS 

framework that considers impacts of land use on multiple ecosystem services in a holistic and 

spatially explicit manner.  A number of sub-models within the framework assess ecosystem 

service stocks and associated indicators and processes, including water quality (total nitrogen 

(TN) and total phosphorus (TP)). Mass transport in LUCI is driven by unique hydrological 

routing algorithms which operate at the underlying digital elevation model (DEM) scale.  

This allows modelling of the entire range of scales, from sub-field to national, 

simultaneously. LUCI uses readily available national data that can be easily supplemented 
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with local knowledge including detailed farm management. Ecosystem service tools can be 

run for individual ecosystem service analysis and to analyse interrelationships between 

ecosystem services, identifying trade-offs and synergies among them.   

LUCI water quality models use an enhanced, spatially representative export coefficient 

approach to model TN and TP exports to water.  Within the GIS framework, annual total 

nutrient exports, or export coefficients (ECs), are spatially-positioned at the DEM grid-square 

scale and cascaded through the landscape as water and sediment accumulate and move 

through the catchment.  For each grid-cell, both on land and in the stream network, 

cumulative annual nutrient load and annual average concentration is calculated.  This method 

identifies nutrient sources and current or potential intercepting nutrient sinks.  While 

valuable, there are issues with using the export coefficient approach.  

The Export Coefficient Approach 

ECs are defined as the “mass of a [contaminant] per unit area per unit time” (White et al. 

2015), commonly quantified in kg ha
-1

yr
-1

. They are generally used in catchment scale water 

quality models to represent diffuse pollution associated with specific land covers and/or uses.  

ECs are most commonly described in association with export coefficient models (ECM), the 

simplest forms of which calculate the total catchment contaminant load by summing area-

averaged loads from individual sources within the catchment.  However, ECs are also 

sometimes used in more complex, mechanistic models to represent diffuse pollution from 

various sources (Lu et al. 2013; Shrestha et al. 2008).  

Most commonly ECs sourced from literature are linked to land cover or use with minimal 

reference to other influential variables. However, to be representative ECs must also consider 

climate, soil, topography, land cover, land use and management, and scale of measurement or 

derivation (Grimvall and Stalnacke 1996; White et al. 2015). Clearly, many of these factors 

are considerably spatially varied, even at small scales. Thus, the capability to determine ECs 

that consider this small scale variability is important.  

A multivariate, algorithmic approach to EC calculation for use in LUCI has allowed us to 

address small-scale variability within pastoral land covers in New Zealand. Using a large 

(>14 000 pastoral blocks) dataset of OVERSEER
® 

input and output from Ravensdown, 

algorithms that consider climate, soil, topography, and management variables were derived 

using a non-linear multiple regression approach (see Jackson et al. (this issue) for further 

detail). LUCI water quality models use these algorithms to calculate an EC for each pastoral 

land cover DEM scale grid square. Currently ECs for other land covers are calculated using 

the same algorithms, but then scaled to respect relative differences between literature-based 

pasture and non-pasture land cover ECs. Development of algorithms specific to those other 

land cover categories would be preferred, but a lack of data hinders their derivation.  

Case Study: Tuapaka Catchment 

The study area is an 85ha catchment situated to the east of Palmerston North in the foothills 

of the Tararua Ranges (Fig. 1). Terrain is rolling to steep hill with a mix of brown and pallic 

soil orders. Ninety percent of the catchment is in pastoral grassland used largely for sheep 

and beef farming, while the remaining 10% is forested. Sixty three hectares of the catchment 

is within Massey University’s Tuapaka Agricultural Experimental Station. Massey University 

have developed a detailed soil map (Pollok and McLaughlin 1986) for the experimental farm 

and have collected meteorological and water quality data within the catchment. 

Meteorological data includes rainfall and evapotranspiration from June 2013-June 2015. Ten 

minute flow data and monthly in-stream water quality sampling (N and P) have also been 
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Fig. 1 - Tuapaka catchment 

collected for this period and a further year of monitoring is currently being undertaken. In 

addition, OVERSEER
®
 has been applied to the area. 

Comparison between actual water quality 

measurements taken between June 2013 and June 

2014 and OVERSEER
®
 predictions of N and P loss 

within this catchment were made by Burkitt et al 

(2016). This study builds on that work by 

conducting a comparative analysis between actual 

water quality measurements from June 2013-June 

2015, OVERSEER
®
 predictions of N and P loss, 

and LUCI water quality predictions. In addition, 

the sensitivity of LUCI’s TN and TP predictions to 

input datasets of varying resolution and accuracy is 

investigated. 

Method 

LUCI water quality models were applied four 

times to the catchment using increasingly detailed 

and catchment specific input data with each 

application (Table 1). Application 1 used only the 

default national datasets. For Application 2, 

nationally available spatially varying annual 

average rainfall and evapotranspiration data by 

NIWA (Tait et al. 2006; Woods et al. 2006) was 

replaced by raster surfaces derived from actual rainfall and evapotranspiration data collected 

from June 2013-June 2014. Derivation was achieved by applying the difference between 

actual and modelled climate variables at the point of measurement to the NIWA raster 

climate surfaces. Application 3 used the above climate surfaces with the addition of the 

Massey University soil map for the Tuapaka Agricultural Experimental farm. This provided 

more spatial detail around soil variability. Application 4 used the climate surfaces based on 

actual data, the detailed soil data and actual farm input information from the OVERSEER
®
 

xml files. Output from the LUCI water quality models, including maps and in-stream loads, 

were then compared to actual water quality data and OVERSEER
®
 predictions. 

 

LUCI Application Climate Data Soil Data Farm Input Data 

Application 1 National
1
 

 

National
2 

Regional default
3 

Application 2 Raster derived from 

actual rain & evap 

National
2
 Regional default

3
 

Application 3 Raster derived from 

actual rain & evap 

Massey University 

Tuapaka Soil Map 

Regional default
3
 

Application 4 Raster derived from 

actual rain & evap 

Massey University 

Tuapaka Soil Map
4
 

Actual farm input 

(OVERSEER xml) 
1
 Rain and evapotranspiration surfaces developed by NIWA (Tait et al. 2006; Woods et al. 2006)  

2
 NZFSL 

https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&men

uItem=SoilData 
3 
Regional farm input defaults developed by LUCI developers 

4
 Pollock and McLaughlin 1986 

Table 1 - Data input details between the four LUCI applications 

 

https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
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Fig 2 – Nitrogen load maps from LUCI Application 1 (2a), Application 2 (2b), Application 

3 (2c) and Application 4 (2d). 

Results and Discussion  

A number of maps and data are generated by the LUCI water quality models allowing 

exploration of TN or TP loads and concentrations both in-stream and on land. The results are 

presented as a map with DEM grid cells coloured according to their total nutrient loads, from 

low total nutrients in red to high nutrient loads in green (Trodahl et al. In Press). Nitrogen 

load maps from the four applications of LUCI are shown in Fig 2a-d. While the highest and 

lowest TN loads remained the same for all four applications, it is clear that Application 4, 

with the addition of actual farm nitrogen input data for Tuapaka Agricultural Experimental 

farm, has lowered nitrogen loads within this area (Fig 2d).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accumulated nitrogen load, classified into 3 groups, from LUCI Applications 1-4 is shown in 

Fig 3a-d. These indicate pathways where water and nitrogen converge in the landscape. 

Spatially explicit identification of these pathways illustrate where opportunities exist to 

intercept nutrients before they enter the stream network. Like Fig 2, maps from Applications 

1-3 are very similar. Fig 3d, however, more clearly identifies pathways of very high load 

allowing more specific spatial targeting of areas for interventions and mitigations.  
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Fig 3 – Accumulated nitrogen load maps from LUCI Application 1 (3a), Application 2 

(3b), Application 3 (3c) and Application 4 (3d). 

Fig 4 shows P load maps from Applications 1-4. Figs 4a and 4b are very similar with the 

highest P loads sourced from the steeper pastoral grassland and lowest loads from the 

forested area and flatter pastoral grassland in the upper catchment. With the addition of the 

detailed soil map in Application 3 (Fig 4c), the highest P loads reduced to 8.8kg TP/ha/yr 

from 12.3kg TP/ha/yr in Applications 1 & 2. This is because the Massey University soil map 

indicates low P retention pallic soils only make up 20% of the catchment compared to 80% 

with the national soil map. A further reduction in the highest P loads (to 5.6kg TP/ha/yr) is 

seen with the addition of actual farm inputs in Application 4 (Fig 4d).   

Classified accumulated P load maps from LUCI Applications 1-4 are shown in Fig 5a-d. Like 

Fig 3, these show pathways of water and P convergence in the landscape where opportunities 

exist to intercept nutrients before they enter the stream network. As with N, it is clear the 

addition of actual, more detailed data better defines pathways, allowing for more specific 

spatial targeting of interventions and mitigations.  

 

Table 2 summarises N and P specific load from measured water quality data, OVERSEER
®
, 

and the four LUCI applications. Average specific load, based on measurements from June 

2013-June 2015, is shown in row 1 with the range over the two years in brackets. 

OVERSEER
®
 estimates of N and P annual average loses are shown in row 2, and below that, 

predictions of N and P specific load for each of the four LUCI applications. 
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Fig 4 –Phosphorus load maps from LUCI Application 1 (4a), Application 2 (4b), Application 

3 (4c) and Application 4 (4d). 

It is clear from the maps and Table 2 that there is little difference between the outcomes from 

LUCI Application 1 and Application 2.  The rainfall and evapotranspiration data from 

Massey University indicated a difference of 10% compared to annual average rainfall and 

evapotranspiration for the area from the NIWA data. In terms of excess rainfall (ie. rainfall 

less evapotranspiration) the difference between the measured and modelled data was only 

7%. Clearly these differences were not sufficient to significantly change LUCI output for N 

or P. The addition of detailed soil data in Application 3 had a clear impact on sources and 

loads of P due to significant decreases of pallic soil within the catchment. Detailed farm input 

data also decreased loads for both N and P. These differences indicate that using data specific 

to a catchment or farm is preferable for use in LUCI, where it is available. Additionally, this 

highlights the ease with which actual and specific data can be incorporated for use in LUCI. 

 

Clearly there are differences between LUCI predictions and measured specific loads (Table 

2). While uncertainties exist around water quality measurements, particularly for P at the 

monthly sampling scale (Johnes 2007; Krueger et al. 2012; Lloyd et al. 2016), this analysis 

suggests that further development to improve representation of nutrient attenuation in the 

catchment may improve the accuracy of LUCI predictions. Currently two catchment scale 

attenuation factors lump into one linear coefficient the impact of losses, lags and/or 

transformations from root zone to stream, and a similar factor represents within-stream 

attenuation. However, attenuation variability at the scales within which LUCI operates could 

be better represented.  
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Fig 5 –Nitrogen Load maps from LUCI Application 1 (5a), Application 2 (5b), Application 

3 (5c) and Application 4 (5d). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Measured and modelled specific load for the Tuapaka catchment. Note for Row 1 

mean is presented with range in brackets. 

 

Conclusion 

Development of a novel multivariate, algorithmic approach to EC calculation has allowed us 

to address small-scale variability within pastoral land covers, enhancing farm to catchment 

scale water quality modelling in LUCI. Exploration of the effect of data resolution and detail 

on TN and TP exports using this newly developed method in the Tuapaka catchment 

Model/Measured NITROGEN 

Specific Load (kg N/ha/yr) 

PHOSPHORUS 

Specific Load (kg P/ha/yr) 

Measured 2.37 

(1.67-3.07) 

0.12 

(0.06-0.18) 

Overseer 8 0.8 

LUCI Application 1 7.39 0.77 

LUCI Application 2 7.39 0.77 

LUCI Application 3 7.7 0.33 

LUCI Application 4 6.23 0.28 
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indicates that using data specific to a catchment or farm is preferable for use in LUCI, where 

it is available.  

However, clear differences still exist between measured nutrient losses and LUCI predictions 

at the catchment scale. Improved understanding and subsequent better representation of 

nutrient attenuation in the catchment is likely to improve the accuracy of LUCI predictions. 

Currently, attenuation is broadly accounted for in LUCI with catchment wide root zone to 

stream and in-stream attenuation factors applied for N and P respectively. Development of 

attenuation factors that account for small scale spatial variability within catchments and 

recognise different processes (lag times, biogeochemical transformations, etc.) is desired. 

This, in addition to development of EC algorithms for other land cover types, are areas for 

further investigation. 
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