
Introduction to the LUCI model: An ecosystem service modelling framework and GIS decision support tool

Bethanna Jackson, Bridget Emmett, David Cooper

Background

- LUCI extends & implements the Polyscape framework described in Jackson et al (2013)*.
- First developed at Pontbren, with farmers & scientists working together to design intervention measures to improve economics and reduce environmental impact.
- FRMRC work up-scaling impacts of detailed farm interventions to catchment scale & conversations with farmers and interdisciplinary scientists inspired design criteria.

*Jackson, B, Pagella, T, Sinclair, F, Orellana, B, Henshaw, A, McIntyre, N, Reynolds, B, Wheater, H, Eycott, A (2013) Polyscape: a GIS mapping toolbox providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services, Urban and Landscape Planning 112, 74-88.

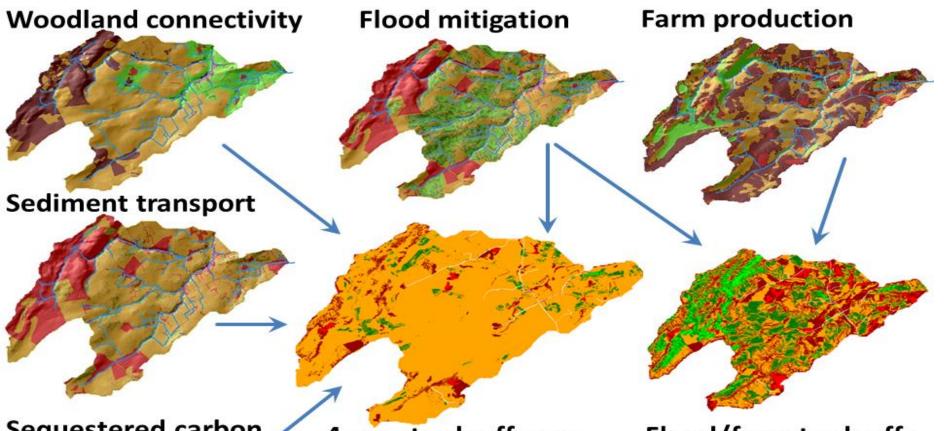
Underlying principles:

Practical

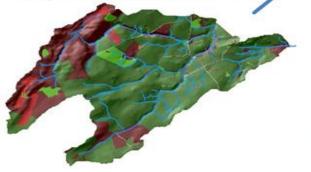
- 1) Can be run using nationally available data; i.e. available everywhere so *relevant to national spatial planning*
- Modular can embed other models
 & aspects can be embedded in other models (LUCI is a *framework*)
- 3) Fast running to enable "real time" scenario exploration

Conceptual

- 1) Operates at a spatial scale *relevant* for field and sub-field level management decisions
- 2) "Values" features and potential interventions by area affected, not just area directly modified
- Addresses tradeoffs & searches for "win-win" solutions


Effects of tree planting at Pontbren post 1990

Service	Actual area modified (%)	Area receiving benefit (%)
Broadleaved focal species	6.8	28.5
Runoff peak	3.2	12.0


Services currently modelled by LUCI

Service	Method			
Production	Based on slope, fertility, drainage, aspect, temperature			
Carbon	IPCC Tier 1 – based on soil & vegetation			
Flooding	Detailed topographical routing of water accounting for storage and infiltration capacity as function of soil and land use.			
Erosion	Slope, curvature, contributing area, land use, soil type			
Sediment delivery	ivery Erosion combined with detailed topographical routing			
Water quality	Export coefficients combined with water flow and sediment delivery models			
Habitat (Approach A)	BEETLE – Forest Research's cost-distance approach to dispersal, examines connectivity of habitats			
Habitat (Approach B)	Identification of priority habitat by biophysical requirements e.g. wet grassland			
Tradeoffs/synergy identification	Various layering options with categorised service maps; e.g. Boolean, conservative, weighted arithmetic			

LUCI actively identifies tradeoffs and synergies

Sequestered carbon

4-way tradeoff map

Key to single service maps High existing value **Existing value** Marginal value

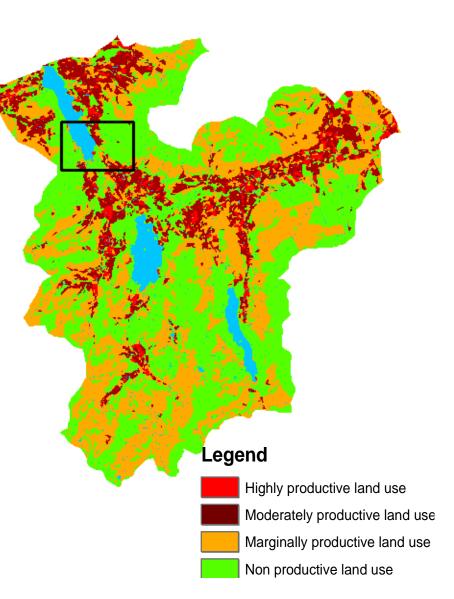
Opportunity to improve service

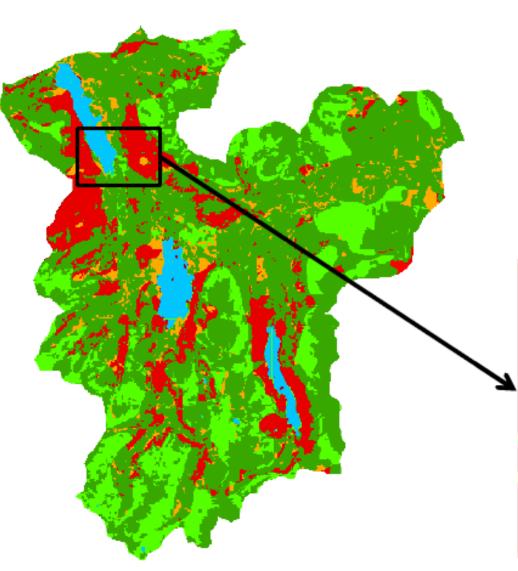
High opportunity to improve

Flood/farm tradeoffs

Key to trade-off maps
Multiple existing services
Some service(s) provided
Tradeoffs in service provision
Opportunity to improve some service(s)
Opportunity to improve multiple services

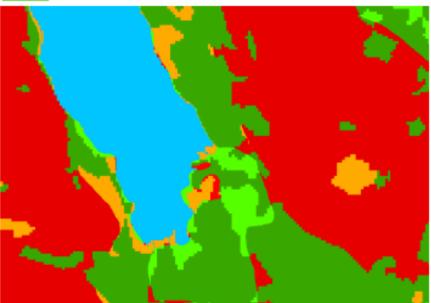
Recent Defra / NE application – Bassenthwaite


- Schemes in place paying farmers to reduce impact of production on environment.
- Concerns current interventions are not delivering "best value for money"
- LUCI being applied to identify where to better target agri-environment measures to improve carbon, water flow and quality, biodiversity while maintaining productivity

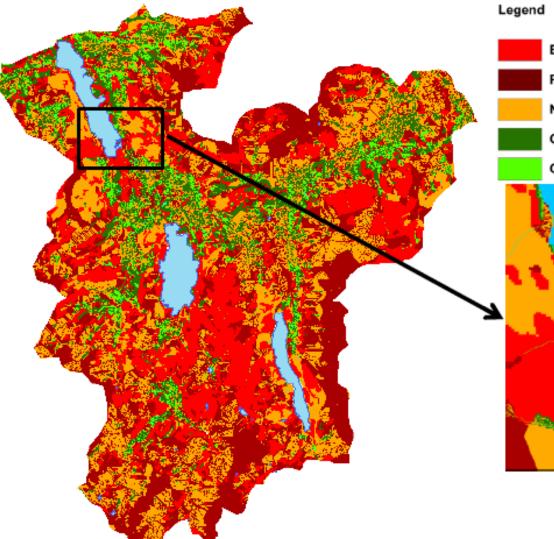

Potential versus current production

Legend

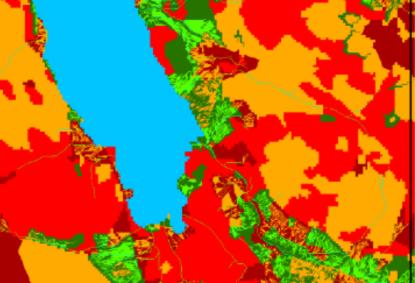
Potential for high productivity Potential for moderate productivity Potential for marginal productivity Negligible potential for productivity



C sequestration/emission



Legend


- High rate of sequestration
- Reasonable rate of sequestration
- Steady-state- negligible sequestration or emissions
- CO2 Emitter
- Significant CO2 emitter

Trade offs & synergies: broadleaved woodland habitat & flooding

Existing provision in both services
Provision in one service and no degradation in either
Negligible provision or trade-offs between provision
Opportunity to improve single provision with no degradation
Opportunity to improve provision in both services

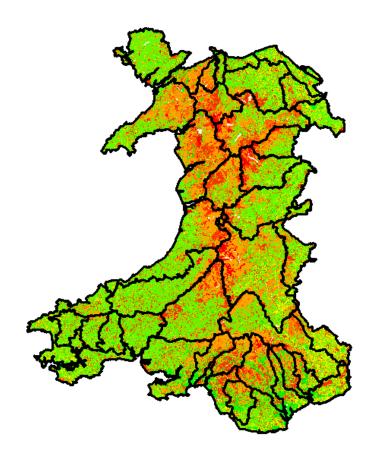
Exploring benefits if interventions were spatially targeted using LUCI

Metric	Units	Pre-ES	Post- ES	Optim Area*	Optim Outcome*
Total present carbon	kg/ha	199	207	221	212
Total future carbon	kg/ha	172	193	209	198
Broadleaf woodland	km ²	18	34	32	26
Area accessible to BLW species	%	45	70	74	69
Additional wet grassland	%	-	0.2	0.8	0.6
Land in production	%	47	39	43	44
Non-"mitigated" land	%	37.7	25.5	24.3	32.7
Connected sediment generating land	%	11.3	6.7	3.6	5.9
P export to rivers/lake	kg/ha/ yr	0.178	0.153	0.124	0.151
Peak flow change in max. Summer flood	%	baseline	-2.3	-9.3	-3.1

*Optim area= same area/payment, more outcome; Optim outcome = less area/payment, similar outcome

Ongoing work - Glastir MEP

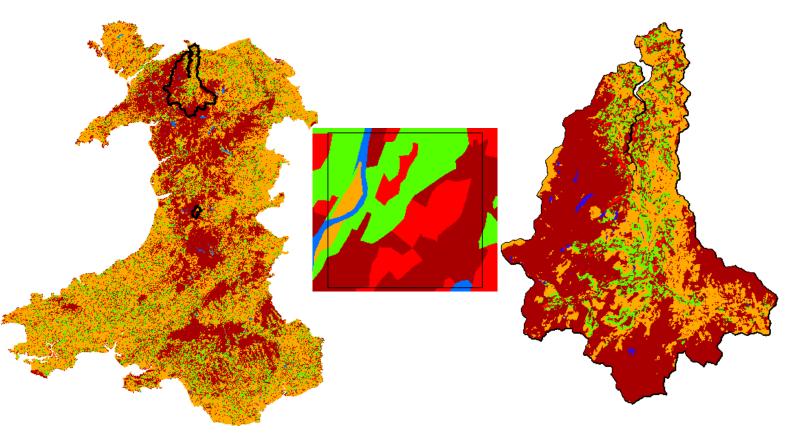
- Ist country deployment– LUCI run over all of Wales (5x5m² resolution)
- LUCI is mapping and quantifying effects from a range of Glastir intervention scenarios, and also identifying strategic locations where interventions might better be targeted
- Web mapping / server deployment is underway to allow non specialists and stakeholders to access scenario exploration
- Interfacing with other models & augmenting "own" models to enhance existing services, add new ones and increase temporal functionality, e.g.


Enhancing:

- Water quality
- Priority habitat and species modelling (e.g. embedding Multimove model),
- Greenhouse gas emissions

Adding:

- Primary production and its economics
- Historic environment risk/exposure/accessibility
- Soil valuation/natural capital
- Protection of infrastructure, etc...


LUCI parallelised & running over all of Wales

42 catchments / catchment bundles 5x5m resolution ~800 million points for each output layer Approx 1 day to generate land management scenario, generate all ecosystem service outputs, and stitch outputs together for mapping/analysis

(output to left is carbon stock, red high, green low)

Analysing results by country, 1km square & for Conwy/Plynlimon demonstration catchments

BESS grant for Conwy app.

Comparing InVest, ARIES, LUCI, examining diversity, size, pattern, position of habitats in wider landscapes
Exploiting data-rich Conwy "Macronutrient" catchment
Beginning December 2013